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A B S T R A C T

Recent advances in MRI and increasing knowledge on the characterization and anatomical variability of medial
temporal lobe (MTL) anatomy have paved the way for more specific subdivisions of the MTL in humans. In
addition, recent studies suggest that early changes in many neurodegenerative and neuropsychiatric diseases are
better detected in smaller subregions of the MTL rather than with whole structure analyses. Here, we developed
a new protocol using 7 Tesla (T) MRI incorporating novel anatomical findings for the manual segmentation of
entorhinal cortex (ErC), perirhinal cortex (PrC; divided into area 35 and 36), parahippocampal cortex (PhC), and
hippocampus; which includes the subfields subiculum (Sub), CA1, CA2, as well as CA3 and dentate gyrus (DG)
which are separated by the endfolial pathway covering most of the long axis of the hippocampus. We provide
detailed instructions alongside slice-by-slice segmentations to ease learning for the untrained but also more
experienced raters. Twenty-two subjects were scanned (19–32 yrs, mean age = 26 years, 12 females) with a
turbo spin echo (TSE) T2-weighted MRI sequence with high-resolution oblique coronal slices oriented ortho-
gonal to the long axis of the hippocampus (in-plane resolution 0.44×0.44 mm2) and 1.0 mm slice thickness. The
scans were manually delineated by two experienced raters, to assess intra- and inter-rater reliability. The Dice
Similarity Index (DSI) was above 0.78 for all regions and the Intraclass Correlation Coefficients (ICC) were
between 0.76 to 0.99 both for intra- and inter-rater reliability. In conclusion, this study presents a fine-grained
and comprehensive segmentation protocol for MTL structures at 7 T MRI that closely follows recent knowledge
from anatomical studies. More specific subdivisions (e.g. area 35 and 36 in PrC, and the separation of DG and
CA3) may pave the way for more precise delineations thereby enabling the detection of early volumetric changes
in dementia and neuropsychiatric diseases.

1. Introduction

The human hippocampus and the adjacent medial temporal lobe
(MTL) regions have been implicated in a number of cognitive functions

including episodic memory (Eichenbaum et al., 2007), spatial naviga-
tion (Ekstrom et al., 2003; Wolbers and Büchel, 2005; Epstein, 2008)
and perception (Lee et al., 2005; Graham et al., 2010; Aly et al., 2013).
At the same time, MTL regions are also affected by a number of
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pathological conditions such as depression (Huang et al., 2013), post-
traumatic stress disorder (Wang et al., 2010), epilepsy (Bernasconi
et al., 2003), and neurodegenerative diseases like Alzheimer's Disease
(Dickerson et al., 2004; Rusinek et al., 2004; Du et al., 2007). Analyses
of subregions in the MTL have thereby shown the potential to reveal
subregion-specific aging and disease effects (e.g. de Flores et al., 2015)
as well as distinct functional roles of specific subregions, for example,
perirhinal cortex (PrC) in object processing (for a recent spotlight, see
Inhoff and Ranganath, 2015), parahippocampal cortex (PhC) in con-
textual association (Aminoff et al., 2013), CA1 in memory integration
(Schlichting et al., 2014), CA3 in memory recall (Chadwick et al.,
2014), and dentate gyrus (DG) in pattern separation (Baker et al., 2016;
Berron et al., 2016).

Recently, novel neuroanatomical findings have increased our
knowledge of boundaries between MTL subregions and their variability
within and across subjects (Ding and Van Hoesen, 2010, 2015; for a
recent atlas, see Ding et al., 2016). This could improve in vivo seg-
mentation and advance research on these MTL subregions because the
sparsity of available anatomical reference information from histological
studies, such as the presentation of only a few slices from a very small
number of cases, has been a major barrier. Ding and Van Hoesen,
however, addressed this by providing several cases to account for
anatomical variation and showing multiple example slices along the
longitudinal axis (Ding and Van Hoesen 2010: 130 hemispheres, 2015:
15 hemispheres). More specifically, their work revealed novel insights
on the boundaries between subdivisions in the PrC - area 35 and area 36
– which depend on sulcal patterns that differ between hemispheres in
continuity and depth (Ding and Van Hoesen, 2010). Further on, they
showed that the boundaries of Sub and CA1 subfields in the hippo-
campal head (HH) feature anatomical variations between individuals
that depend on the number of hippocampal digitations and provide
more anatomical detail for subfield boundaries in the hippocampal
head (Ding and Van Hoesen, 2015). Additionally, in the latter study
(Ding and Van Hoesen, 2015), data was sectioned perpendicular to the
long axis of the hippocampus, thereby matching MR images commonly
used for MTL subfield segmentation in vivo (Yushkevich et al., 2015a).
Usually, most of the extant histological reference material is based on
samples sectioned at orientations different from the slice orientation in
these MR images, and it is unclear how much this difference in or-
ientation affects the translation of anatomical boundaries to in vivo MR
images, especially in the more complex head region of the hippocampus
(these issues were also mentioned in Wisse et al., 2016b). To our
knowledge, there is currently no segmentation protocol that in-
corporates these novel findings. Consequently, the aim of this paper
was to develop an MRI segmentation protocol leveraging all the new
information presented by Ding and Van Hoesen (2010, 2015) using 7
Tesla (T) magnetic resonance imaging (MRI).

7 T MRI offers ultra-high resolution and increased signal-to-noise
ratio thereby allowing for a more consistent slice-by-slice visualization
of internal features, while maintaining a smaller slice thickness (of up
to 1 mm), which is especially needed to resolve the complex anatomy in
the hippocampal head. Specifically, T2-weighted images with high in-
plane resolution were used to delineate MTL subregions because of the
visualization of the stratum radiatum lacunosum moleculare (SRLM),
which appears as a thin dark band on these scans and can be used to
define borders between some of the subregions.

Several segmentation protocols have been published for 7 T (Wisse
et al., 2012; Boutet et al., 2014; Goubran et al., 2014; Maass et al.,
2014, 2015; Parekh et al., 2015; Suthana et al., 2015) utilizing the
improved resolution for the distinction of small subfields such as the DG
and CA3 in the hippocampus (Parekh et al., 2015), the SRLM (Kerchner
et al., 2012), and allowing for specific analyses of subregions of the ErC
(Maass et al., 2015) and even entorhinal layers (Maass et al., 2014).
However, most 7 T protocols limit the segmentation to the hippocampal
body and do not include the head and tail of the hippocampus, with the
exception of Wisse et al. (2012) and Suthana et al. (2015). Critically,

most published 7 T protocols have not reported inter- or intra-rater
reliability, which is necessary to ensure that the described rules can be
reliably applied.

At lower MRI field strengths, a greater number of segmentation
protocols have been developed for hippocampal subfields (Zeineh et al.,
2001; Mueller et al., 2007; Malykhin et al., 2010; La Joie et al., 2013;
Winterburn et al., 2013; Daugherty et al., 2015) as well as extra-
hippocampal regions ErC, PrC and PhC (Insausti et al., 1998; Pruessner
et al., 2002; Feczko et al., 2009; Kivisaari et al., 2013; Yushkevich et al.,
2015b). However, these protocols often lump together hippocampal
subfields, mostly do not include individual variability, and provide less
detailed descriptions for manual segmentation. Crucially, none of these
protocols at 7 T or lower field strengths have incorporated the anato-
mical variations dependent on hippocampal indentations (Ding and Van
Hoesen, 2015) or individual sulcal patterns in the parahippocampal
gyrus described above (Ding et al., 2009; Ding and Van Hoesen, 2010)
to provide precise subvariant-specific and depth-dependent rules that
account for the variability across and within subjects.

Reference should be made to a large multi-investigator effort cur-
rently underway to develop a harmonized protocol for hippocampal
subfields and extrahippocampal subregions (Wisse et al., 2016a), fol-
lowing the harmonized protocol for the total hippocampus (Apostolova
et al., 2015; Frisoni et al., 2015). This harmonization effort was laun-
ched to overcome significant differences reported between extant seg-
mentation protocols (Yushkevich et al., 2015a). However, the harmo-
nization effort is currently aimed at 3 T MRI (first limited to the
hippocampal body, to be followed by expansion to the head and tail),
and the protocol for 7 T and extrahippocampal regions is not antici-
pated for several more years.

Therefore, we aimed to establish a segmentation protocol to
manually delineate subregions in the parahippocampal gyrus as well as
hippocampal subfields in 7 T MRI images leveraging the information on
subfield boundaries and anatomical variability presented in Ding and
Van Hoesen (2010, 2015) and Ding et al. (2016), which can also inform
high-resolution studies at 3 T. To ensure that the rules can be reliably
replicated, we performed intra- and inter-rater reliability analyses in
the left and right MTL of 22 younger adults. Critically, this manuscript
provides very detailed and comprehensive descriptions alongside slice-
by-slice plots to facilitate the application of the segmentation rules.

2. Materials and methods

2.1. Participants

Participants were included using baseline data from a study in-
vestigating the effects of physical exercise on the brain. Exclusion cri-
teria were reports of regular sports activities that improve cardiovas-
cular fitness as well as high physical activity levels. In addition,
participants were screened for known metabolic disorders and neuro-
logical or psychiatric history, and excluded from further examination in
case of incidents reported during history taking. Participants were re-
cruited from the Otto-von-Guericke University campus in Magdeburg.
Fifteen young and healthy individuals (16 hemispheres) were included
from the baseline scan before any intervention. Seven additional sub-
jects (8 hemispheres) were included after refining the rules for sulcus
depth measurements (age range 19–32; mean age = 26, 12 female; see
2.6 and 3.1). In total, we used 24 hemispheres of 22 subjects. All sub-
jects gave informed and written consent for their participation in ac-
cordance with ethic and data security guidelines of the Otto-von-
Guericke University Magdeburg. The study was approved by the local
ethics committee.

2.2. Workshop

In order to test the usability of the manual segmentation protocol,
we hosted a segmentation workshop for 35 participants who were
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mostly novices (29 out of 35). The protocol was sent out four weeks
prior to the workshop in combination with example MR images in order
to give participants the opportunity to familiarize themselves with the
segmentation approach. On site, we presented the protocol followed by
an intensive hands-on session. From that, we used the given feedback
and most commonly occurring problems to refine the protocol and
improve comprehensibility for novice raters. This includes figures that
provide a quick overview of the rules (Fig. 9), more detailed annota-
tions of the slice-by-slice plots (Fig. 3, Fig. 4, Fig. 6, Fig. 7) as well as
supplemental material (see Appendix A) of cases with rare anatomic
variants.

2.3. Image acquisition

Imaging data were collected at the Leibniz Institute for
Neurobiology in Magdeburg on a 7 T MR scanner (Siemens, Erlangen,
Germany) with a 32-channel head coil (Nova Medical, Wilmington,
MA). We acquired partial turbo spin echo (TSE) T2-weighted images
oriented orthogonal to the long axis of the hippocampus (in-plane re-
solution = 0.44 × 0.44 mm, 55 slices, slice thickness = 1 mm, dis-
tance factor = 10%, TE = 76 ms, TR = 8000 ms, flip angle = 60°,
FOV = 224 mm, bandwidth = 155 Hz/Px, echo spacing = 15.1 ms,
TSE factor = 9, echo trains per slice = 57). The slice thickness of 1 mm
together with the 10% distance factor results in a distance of 1.1 mm
between slices. Scan-time was 7:46 min.

2.4. Segmentation software

Structures were manually traced by two experienced raters (A.H.
and A.L., see 2.6 for details) on oblique coronal slices using ITK-SNAP
(Version 3.4; www.itksnap.org; (Yushkevich et al., 2006)). The images
were adjusted for equivalent contrast range prior to segmentation (by
capping the contrast curve at a maximum of 500). ITK-SNAP provides
very useful features for implementing this protocol, such as an anno-
tation tool for drawing lines and measuring distances.

2.5. Manual segmentation protocol

The protocol describes rules for manual segmentation of structures
in the MTL in coronal MR images. The segmentation guidelines for the
parahippocampal cortex (PhC), perirhinal cortex (PrC; area 35 and 36),
entorhinal cortex (ErC) as well as the outer contours of the hippo-
campus are described in the first part (2.5.2), and further subdivision of
the hippocampus into subfields are described in the second part (2.5.3;
for a segmentation hierarchy see Fig. 1). Boundary rules are based on
recent data from neuroanatomical atlases (Ding and Van Hoesen, 2010,
2015; Mai et al., 2015; Ding et al., 2016). In this protocol we separately
report neuroanatomical evidence and resulting rules, which can be
applied to MR images. Boundary rules are provided in millimeters in
order to make the protocol applicable to scans of different resolution
and facilitate comparisons with the neuroanatomical literature. The
protocol is particularly focused on T2-weighted images acquired at 7 T

with 0.44 × 0.44 mm2 in-plane resolution and 1 mm slice-thickness
with 0.1 mm spacing. Some inner boundaries described in the section
about hippocampal subfields, especially the boundaries of CA3 and DG
that rely on the visualization of the endfolial pathway (Lim et al.,
1997), are likely only applicable to 7 T high-resolution T2 images.
However, the described protocol could potentially also be applicable to
other images that are acquired orthogonally to the long axis of the
hippocampus with similar in-plane resolution and larger slice-thickness
(e.g. 2 mm slice thickness).

2.5.1. Anatomical labels used in the protocol
In this protocol, we segment ErC, PrC, PhC and the hippocampus.

We differentiate between area 35 and 36, which are frequently con-
sidered together as constituting the PrC in manual segmentation pro-
tocols (Zeineh et al., 2001; Ekstrom et al., 2009; Preston et al., 2010;
Olsen et al., 2013; Duncan et al., 2014), except for (Kivisaari et al.,
2013; Yushkevich et al., 2015b). However, these regions constitute
different neuroanatomical parts of PrC (Ding and Van Hoesen, 2010).
Therefore, following the terminology of Ding and Van Hoesen, we refer
to these regions as area 35 and 36. Note that these regions are slightly
different from Brodmann areas 35 and 36 as the latter extend more
posterior than area 35 and 36 in our study (for discussion see Ding and
Van Hoesen, 2010). We note that area 35 roughly corresponds to the
transentorhinal region (Braak and Braak, 1991) and also to the medial
PrC (Kivisaari et al., 2013). Detailed guidelines for hippocampal sub-
fields involve the boundaries between the subiculum (Sub), CA fields
1–3 and the dentate gyrus (DG). Note that our definition of Sub includes
subiculum proper, prosubiculum, presubiculum and parasubiculum
(Ding, 2013). Also, the DG here includes the hippocampal hilus or re-
gion CA4, as these cannot be separated at this field strength. The SRLM
is equally divided between its surrounding structures and not seg-
mented separately. Hippocampal subfield segmentation encompasses
the whole hippocampal head (HH) and body (HB) and is not performed
in the tail (HT) because of the limited information with regard to the
subfield boundaries in this region.

2.5.2. Hippocampus and subregions in the parahippocampal gyrus
2.5.2.1. Exclusions: Alveus, fimbria, cerebrospinal fluid and blood
vessels. Fimbria and alveus as well as blood vessels, all appearing
hypointense in T2-weighted images (see Fig. 2), are excluded from
anatomical masks as they do not belong to any particular subfield
(Duvernoy et al., 2013). In general, the hippocampus is enclosed by
white matter, visible as a hypointense line surrounding it. This line is
spared from segmentation in this protocol. Additionally, there are
several blood vessels within and close to the hippocampus. Both blood
vessels and potential concomitant signal dropout should be excluded
from the segmentation. Cerebrospinal fluid (CSF) and cysts appear
hyperintense on T2-weighted MRI. Cysts, often located in the
hippocampal sulcus (hippocampal fissure) at the ventrolateral flexion
point of CA1 (van Veluw et al., 2013) are given a separate label. CSF -
either surrounding the hippocampus or along a whole sulcus (e.g.
hippocampal, uncal, collateral, occipito-temporal sulci) - are entirely

Fig. 1. Segmentation hierarchy. Segmentation of entorhinal
cortex (ErC), area 35 and 36 of the perirhinal cortex (PrC),
parahippocampal cortex (PhC) and the whole hippocampus se-
parated into head (HH), body (HB) and tail (HT) are described in
2.5.2 (dark blue) and segmentation of hippocampal subfields is
described in 2.5.3 (light blue). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the
web version of this article.)
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excluded from the anatomical masks. CSF in sulci can be given a
separate label as CSF (see explanation below).

2.5.2.2. Hippocampal formation. In the following paragraph we provide
segmentation rules separately for the hippocampal head, body and tail.
This is done to structure the following section rather than to construct
independent masks of head, body and tail portions.

2.5.2.2.1. Hippocampal head. The anterior tip of the hippocampal
head (HH) can be easily identified without additional landmarks (see
Fig. 3, HH0). Once the uncal sulcus can be followed from its fundus to
the medial surface, the ErC becomes the inferior boundary of the HH,
which is segmented by connecting the most medial point of the white
matter to the most medial point of the grey matter (see Fig. 3, HH4;
(Wisse et al., 2012)). At the posterior end of the HH, the uncus
separates from the hippocampus (see Fig. 3, HH14). While the uncus
is still connected to the rest of the HH (via grey matter), the
hippocampus is segmented as one structure (see Fig. 3, HH13). Once
the uncus is separated (e.g. only connected via the fimbria), the HH and
uncus are segmented as separate structures in the coronal plane (see
Fig. 3, HH15).

2.5.2.2.2. Hippocampal body. The hippocampal body (HB) begins
when the uncus has disappeared (1 slice posterior to the uncal apex; see
Fig. 3, HB 0). White matter and CSF surround the HB superiorly,
medially and laterally. The medial-inferior boundary of the HB is the
connection of the most medial point of the white matter to the most
medial part of the grey matter, where it successively borders ErC, area
35 and PhC (see Fig. 3 HB 0 - HB 3, e.g. (Ding and Van Hoesen, 2010).
Sometimes, in more posterior slices, a small sulcus (the anterior tip of
calcarine sulcus; CaS) appears medially between HB and PhG. In this
case, the lateral and medial banks of the CaS are spared from
segmentation (see Supplementary Fig. 1). However, often the CaS
only appears in HT. The HB is segmented as long as the inferior and
superior colliculi are visible (medial butterfly-shaped structures) (Wisse
et al., 2016c). Segmentation does not stop before the colliculi have
disappeared entirely. This rule is applied for each hemisphere
separately (see Supplementary Fig. 2).

2.5.2.2.3. Hippocampal tail. The hippocampal tail (HT) is a
structure that is surrounded by white matter laterally, superiorly and
ventrally. Most of these white matter structures are represented by
alveus, fimbria and fornix, and are therefore excluded from
segmentation. The medial-inferior boundary is constructed in the
same way as that for the HB (see Fig. 4, e.g. HT0–6). In more
posterior slices, the HT (supero) laterally neighbors CSF in the
trigone of the lateral ventricle (see Fig. 4, e.g. HT3). The last slice of
the hippocampus is the last slice where the HT is clearly visible (see
Fig. 4, HT11) which can also be checked on sagittal slices. It should be
noted that at the very end of HT the hippocampus might medially blend
with a gyrus, sometimes referred to as subsplenial gyrus (Ding et al.,
2016). This gyrus is included in the hippocampal mask until it is no
longer connected to the rest of the hippocampal grey matter.

Note that different definitions of the body/tail border exist. Here,

we chose the colliculi as they are easily identifiable, and are intended to
provide a reliable posterior border for subfield segmentation.

2.5.2.3. Entorhinal cortex. Segmentation of the ErC (as well as area 35
and area 36) begins 4.4 mm (= 4 slices here) anterior to the first slice
of HH. That is, 4 slices have to be counted anterior to the hippocampus
to define the starting slice. Although the ErC extends through most of
the anterior temporal lobe (Ding and Van Hoesen, 2010; Kivisaari et al.,
2013) we chose this border because it is easily identifiable, and high-
resolution structural imaging protocols often do not cover the entire
anterior MTL. The superior border in anterior slices is the semiannular
sulcus (Mai et al., 2015; Ding et al., 2016). Sometimes, this sulcus is not
visible from the most anterior end of ErC, in which case it should be
extrapolated from more posterior slices where it can be clearly
identified (see Fig. 3, HH2). The ErC covers the ambient gyrus (AG;
see Fig. 3, HH0–3). Note that the ambient gyrus is made up of different
subfields in an anterior-to-posterior direction. While the ambient gyrus
is occupied by the ErC in more anterior slices (Insausti and Amaral,
2012), it consists of Sub and CA1 in more posterior sections (Ding and
Van Hoesen, 2015). Moving posteriorly, at the point where the uncal
sulcus can be followed from its fundus to the medial surface, Sub
becomes the new superior border (see Fig. 3, HH4). It is constructed by
drawing a line from the most medial part of the white matter to the
most medial part of the grey matter (Mueller et al., 2007; Wisse et al.,
2012; Yushkevich et al., 2015b). This rule applies until the posterior
end of ErC. The lateral border of ErC mainly consists of white matter.
With respect to the inferomedial border, in some subjects CSF can be
discerned between the ErC and the laterally located meninges (Xie
et al., 2016, 2017). Therefore, bright voxels medial to the ErC have to
be spared from the segmentation (see Fig. 3, HH1–7). It should be noted
that the intensity can depend on how much space there is between the
meninges and the cortex. Sometimes these voxels appear slightly darker
than CSF at other locations because of partial voluming with
surrounding voxels. Inferolaterally, the ErC is bordered by area 35.
This boundary is constructed at ¼ of the longest expansion of CS (from
edge to top of the grey matter) as the shortest connection between CS
and white matter (see Fig. 5). The only exception from this rule occurs
when CS is< 4 mm deep (very shallow CS); in that case the boundary
between ErC and area 35 moves more lateral to the extension of the
fundus of the CS. ErC disappears approximately 2 mm after the HH
(Insausti and Amaral, 2012). Segmentation of the ErC stops therefore
after 2.2 mm (=2 slices here) into the HB, i.e. after 2.2 mm posterior to
the uncal apex (see Fig. 3, HB0). The last slice of ErC serves as an
intermediate step between ErC and the increasing size of area 35.
Therefore, the lateral border of the ErC shifts by dividing ErC in half
(Insausti et al., 1998; Ding and Van Hoesen, 2010; Mai et al., 2015).

2.5.2.4. Perirhinal cortex. Segmentation of area 35 and area 36 of the
PrC is dependent on the sulcal pattern within the MTL – especially the
collateral sulcal patterns are highly variable between brains but can
also differ between hemispheres of the same brain. There are two main

Fig. 2. Structures excluded from segmentation in a coronal
view. Anterior hippocampal body slice from a T2 MRI scan
including alveus, fimbria, SRLM, a blood vessel and a cyst
in the ventrolateral flexion point of CA1 in the vestigial
hippocampal sulcus.
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Fig. 3. Slice-by-slice segmentation for a type 1 collateral sulcus (CS) – anterior part. Slices are 1.1 mm apart. Included are entorhinal cortex (ErC; brown), perirhinal cortex (area 35 in
mint green, area 36 in dark blue), subiculum (pink), CA1 (red), CA2 (green), CA3 (yellow) and dentate gyrus (blue). Shown in HH2, ErC covers the ambient gyrus (AG) and superiorly
ends at the semiannular sulcus (SaS). SaS constitutes the superior border of ErC and should be extrapolated to anterior slices when it cannot be identified there. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

D. Berron et al. NeuroImage: Clinical 15 (2017) 466–482

470



types of MTL anatomy – one deep CS (Type 1; 45%), and a
discontinuous CS (Type II; 52%), which can be divided into an
anterior (CSa) and a posterior section (CSp) (Ding and Van Hoesen,
2010). CSp is usually longer and deeper than CSa. Studies have found a
negative correlation between the depth of the CS and the depth of the
occipito-temporal sulcus (OTS). In subjects with a shallow CS, the OTS
is often deep and vice versa (see Fig. 5; (Ding and Van Hoesen, 2010)).
In some cases, the CS is bifurcated, i.e. it appears to have two conjoined
sulci; the more medial sulcus is used here in this case (i.e. for evaluating
the depth of CS). When it is difficult to identify the sulcal pattern in one
slice, we recommend to check in adjoining slices and interpolate to the
difficult slices.

Given the differences in anatomy, different segmentation guidelines
have to be applied for the different sulcal patterns as well as the depths
of the CS. It is highly recommended to first define the sulcal pattern for
each hemisphere before starting the manual tracing. The following

descriptions are visualized in Fig. 5.
2.5.2.4.1. Area 35. Segmentation of area 35 starts at the same

artificially chosen slice as ErC, i.e. 4.4 mm (=4 slices) anterior to the
first HH slice. Neuroanatomical atlases indicate that the posterior
border of area 35 falls within 5 mm of the anterior portion of the HB.
Segmentations therefore end 4.4 mm (=4 slices) after the start of HB,
which is also 2.2 mm posterior to ErC (Insausti et al., 1998; Ding and
Van Hoesen, 2010). In the most posterior 2.2 mm, area 35 borders the
Sub medially (see Fig. 3, HB1-HB3); in all anterior slices it borders ErC.
The superolateral and inferomedial borders are in accordance with
those of ErC (e.g. white matter and CSF or meninges). The lateral
border of area 35 depends on the depths of the sulci, and is measured
from edge to fundus of the respective sulcus on each individual slice.
For that purpose, the edges adjacent to the sulcus are connected via a
tangent line. The depth of the sulcus is now measured from the middle
of this line to the fundus of the sulcus (see Supplementary Fig. 3A; also

Fig. 4. Continuation of Fig. 3 - Slice-by-slice segmentation for a type 1 collateral sulcus (CS) – posterior part. Slices are 1.1 mm apart. Included are parahippocampal cortex (PhC; dark
pink), subiculum (pink), CA1 (red), CA2 (green), CA3 (yellow), dentate gyrus (blue), and the hippocampal tail which, is not divided into subfields. In HT7, the subsplenial gyrus starts
medially blending into the hippocampus. As soon as it is detached from the hippocampus, it is excluded from segmentation (HT + 1). Delineation of PhC stops at the calcarine sulcus
(CaS) in HT2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

D. Berron et al. NeuroImage: Clinical 15 (2017) 466–482

471



Fig. 5. Different depths of the collateral sulcus (CS) with respective segmentation rules applied. Sulcus depth is measured from edge to fundus of CS as indicated by the red arrows. Edge,
fundus, crown and bank are indicated for easy anatomical descriptions of the gyral and sulcal patterns. Quartiles for segmentation rules are defined by measuring the full extent of grey
matter from edge to top along the respective bank as indicated by the white two-sided arrows in the images on the right. Entorhinal cortex (brown) ends laterally at ¼ of the grey matter
bank medial to CS, when CS is deeper than 4 mm. For very shallow CS (< 4 mm), entorhinal cortex covers the whole medial bank of CS and ends at the extension of the fundus of CS.
Segmentation rules for area 35 (green) change depending on the depth of CS: very deep – area 35 covers the middle part from ¼ to ¾ of the grey matter bank medial to CS; deep – area 35
covers the whole superior ¾ of the grey matter bank medial to CS; shallow - area 35 extends up to half of the lateral bank of CS; very shallow - area 35 extends up to half of the crown of the
fusiform gyrus (FG). Area 36 (blue) directly neighbors area 35 laterally, and extends towards the entire bank medial to occipitotemporal sulcus (OTS). The hippocampal head (HH) is
depicted in turquoise. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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schematics in Fig. 5). If the sulcus bends, the depth is measured in
separate legs along the middle of the sulcus (see Supplementary
Fig. 3B).

Very deep CS (> 10 mm) Area 35 occupies the two middle fourths
of the medial bank of the CS. Its lateral boundary with area 36 is
constructed at ¾ of the medial bank of the CS (see Fig. 5).
Deep CS (7–10 mm) From the border to ErC, area 35 occupies the
remaining ¾ of the medial bank of the CS (see Fig. 5); i.e. from ¼ of

the medial bank up to the top of grey matter.
Shallow CS (4–7 mm) From the border to ErC, area 35 extends up to
half of the lateral bank of the CS (see Fig. 5).
Very shallow CS (< 4 mm) From the border to ErC, area 35 extends
up to half of the crown of the fusiform gyrus (FG; see Fig. 5).

When both CSa and CSp are visible on the same slice, the lateral
boundary of area 35 is constructed at half of the crown between the two
CS (see Fig. 6, HH4). As soon as the CSa has disappeared, the same

Fig. 6. Slice-by-slice segmentation for a type II collateral sulcus (CS) – anterior part. Slices are 1.1 mm apart. Included are entorhinal cortex (ErC; brown), perirhinal cortex (area 35 in
mint green, area 36 in dark blue), subiculum (pink), CA1 (red), CA2 (green), CA3 (yellow) and dentate gyrus (blue). HH4 is an example of a transition slice between anterior (CSa) and
posterior CS (CSp) and the corresponding segmentation of area 35. The occipitotemporal sulcus (OTS) establishes the lateral border of area 36. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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depth rules apply to CSp as shown in Fig. 5. A decision tree can be used
to facilitate the necessary decisions (see Supplementary Fig. 4). The
relationship of area 35 to area 36 length in histological studies roughly
resembles a 1:3 ratio. Our rules are designed in order to approximate
this ratio.

2.5.2.4.2. Area 36. Segmentation of area 36 is done in the same slices
as area 35, that is, starting 4.4 mm anterior to the first HH slice, and
ending 2.2 mm posterior to ErC. Area 36 directly borders area 35, thus
its medial boundary depends on the different sulcal patterns described
for area 35. Its lateral border is defined by the next lateral sulcus – the
OTS. This border extends previous protocols (Insausti et al., 1998;
Pruessner et al., 2002; Feczko et al., 2009; Kivisaari et al., 2013) and is
specifically based on Ding and Van Hoesen (2010). It is constructed by
following the longest expansion of OTS, from medial edge to top of the
grey matter, thereby including the whole medial bank of OTS (see
Fig. 5). It should be noted here that OTS is very variable, i.e. it can be
bifurcated, or there could be two OTS. In these cases, the more medial
OTS should be used as the border (see Supplementary Figure 5).
Generally, OTS is rather deep and shows a reciprocal relationship
with CS (see Section 2.5.2.4.1 on area 35 for more detail), and thus can
be differentiated from other small sulci that sometimes appear in-
between CS and OTS, e.g. the mid-fusiform sulcus in posterior slices (for
reference, see (Ding et al., 2016), and Supplementary Fig. 6).

Sometimes, another small sulcus, the rhinal sulcus, is visible in very
anterior slices. Generally, it is medial to CS and more shallow; it often
‘travels’ up the CS (see Supplementary Fig. 7). In very rare cases, the
rhinal sulcus can be separate from CS so far posterior that it affects
segmentation. That is, when the rhinal sulcus is separate and visible on
the medial cortical surface, the rules change in a way as if one were to
substitute the CS with the rhinal sulcus and the OTS with the CS. The
boundaries follow the same depth rules as above but are applied to the
rhinal sulcus. The very lateral border of area 36 is now the CS and not
the OTS. When the rhinal sulcus disappears, area 35 and area 36 change
to the usual patterns.

2.5.2.5. Parahippocampal cortex. Anteriorly, the segmentation of the
PhC directly adjoins the posterior end of area 35. Thus, it begins
5.5 mm (=5 slices) posterior to the uncal apex (see Fig. 3, HB4;
(Insausti et al., 1998; Ding and Van Hoesen, 2010)). As with area 35,
the PhC has a medial-superior boundary with Sub (see Fig. 3, starting
HB3). The superolateral and inferomedial borders are in accordance
with those of ErC (e.g. white matter and CSF). The lateral boundary is
the fundus of the CS extended to the top of grey matter. Posterior
regions of the parahippocampal and fusiform gyrus include areas TH,
TL and TF (Ding and Van Hoesen, 2010). While TH and TL cover
regions in the parahippocampal gyrus, TF occupies parts of the fusiform
gyrus. The PhC in this study only covers temporal areas TH and TL, but
not TF (confer (Ding and Van Hoesen, 2010; Ding et al., 2016)).
Segmentation stops when the anterior tip of the CaS appears medially -
a small sulcus that mostly folds in a superior-to-inferior direction (see
Fig. 4, HT2; Supplementary Fig. 1). Since little anatomical literature is
available on the PhC, we based this decision on Song-Lin Ding's
expertise annotating this region in histology samples, and because the
CaS can be reliably identified in every subject. There is another small
sulcus lateral to CaS, the newly discovered parahippocampal-ligual
sulcus (PhligS; (Ding et al., 2016); see Supplementary Fig. 8), which
would be a better indicator of PhC's borders. However, it was not
possible to reliably distinguish this sulcus in every subject's MRI and we
therefore chose to use the CaS as a landmark.

2.5.2.6. Transitions and labeling of the sulci. In order to maintain smooth
transitions between slices that resemble the anatomy more closely we
introduce transitions. Whenever there are sudden changes from one
rule to the other, or sudden appearances of anatomical structures, one
intermediate slice serves as a transition. Thus, the last slice where the

anatomy fulfills the criteria of one rule serves as a transition slice to the
next rule by applying an intermediate step in the middle between both
rules (e.g. see Fig. 3, HB1; Fig. 6, HH0 and HB1). This procedure should
be used in the following cases: (1) when ErC ends posteriorly, (2) when
only CSa changes to only CSp without both being visible on the same
slice (see also Supplementary Fig. 9) and (3) when the OTS “jumps”
(appears/disappears) from one slice to the next. An optional additional
label for the CS and OTS can be added to facilitate thickness
measurements using automated tools (e.g. ASHS (Yushkevich et al.,
2015b). In case the CSF within the sulci is visible, these voxels can be
labelled as sulcus. If the sulcus is not completely visible, there are
usually some hints to it, such as an indentation on the inferior portion
or a patch of CSF in the middle. If the sulcus cannot be identified, it can
be estimated based on the thickness of the medial and lateral grey
matter banks on surrounding slices. Inferring the sulcus in this way
ensures that all voxels labelled as sulcus have adjacent edges (that is:
not 1 voxel thick diagonal). In addition, if the gyri around CS and OTS
touch, i.e. if no white matter in-between their grey matter banks is
visible, the line of voxels in the middle between the two sulci should be
artificially excluded from segmentation to allow meaningful thickness
measurements. Alternatively, if the separation of the two banks can be
inferred from the surrounding slices, a voxel line approximating that
separation should be used instead.

2.5.3. Hippocampal subfields
These guidelines are mostly based on ex-vivo parcellations by Ding

and Van Hoesen (2015), and on comparative, additional information
derived from other publications, such as the Mai atlas (Mai et al., 2015)
and the protocol from Wisse et al. (2012).

2.5.3.1. Sub and CA1 segmentation starts. Mostly, the first anterior slice
of the HH appears as one structure. Sub is then assigned to all of it
(Fig. 7A). Approximately 1–2 mm posterior to that, a hypointense line
appears (i.e. uncal sulcus/SRLM; (Ding and Van Hoesen, 2015))
dividing the hippocampus into a superior and an inferior part and
shaping the hippocampus similar to a lip (Fig. 7B). From here, the
SRLM is equally divided between the regions it separates unless it is
only 1 voxel wide, in which case it is segmented such that it always
belongs to the superiorly located structure. Also at this point, the
segmentation of CA1 starts. The guidelines can be more readily
understood by looking at Fig. 7B and B’. The inferior boundary (i.e.
on the “lower lip”) between Sub and CA1 is an orthogonal line to the
longitudinal Sub. It is positioned by finding the most lateral voxel of the
SRLM, moving to the next medial one, and is constructed there from
inner to outer side of the structure. The superior boundary between Sub
and CA1 is extrapolated from a posterior slice where the digitation of
the HH can be clearly identified, i.e. when the “upper lip” has at least
two dents (Fig. 7B’). At the second indentation counted from lateral to
medial, a straight line is constructed orthogonal to the structure, and
copied to anterior slices. Posteriorly, the border is positioned at this
same indentation on each individual slice. This border closely
approximates what is observed in the hippocampal subvariants with
two and three indentations, as described by Ding et al. (see Figs. 6 and 7
in Ding and Van Hoesen, 2015). Once the uncal sulcus opens, the
separation of CA1 and Sub continues along the uncal sulcus (MR image
in Fig. 7B’). This may coincide with the appearance of DG, although it
may also occur slightly more posterior.

2.5.3.2. DG segmentation starts. When DG appears, and does not yet
stretch to the most lateral extension of the uncal sulcus (confer Fig. 6,
HH4), the inferior boundary between Sub and CA1 is constructed
exactly like before. If, however, DG extends towards the most lateral
point of the uncal sulcus (confer Fig. 6, HH5), the reference point
changes from one voxel medial from the most lateral SRLM to the most
lateral DG voxel (Fig. 7C). It is crucial to not confuse DG with cysts
(which are brighter). However, if there is a cyst within DG that
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establishes the most lateral border, the cyst is used instead of DG to
identify the CA1/Sub border (Fig. 7D). Based on Ding and Van Hoesen
(2015), the superior part of the subiculum disappears 1.2–1.8 mm after
the appearance of the DG. We therefore chose to end segmentation of

the superior part of the subiculum 2.2 mm (=2 slices) after the first
appearance of DG and this portion is then occupied by CA1 (Fig. 7D).
These borders are identified in the same way again on all following
slices, although they often just stay the same as on the previous slices.
From here, the SRLM is equally divided if thicker than 1 voxel, and
otherwise segmented so it always belongs to the outer structure (i.e.
CA1/Sub/etc., but not DG). It should be noted that contrary to the
white matter surrounding the hippocampus, the hypointense line on the
superior side of Sub is always included in the segmentation as it consists
of the molecular layer of the Sub. Additionally, the inferior side of Sub
is prone to signal drop-out due to the crossing perforant path; therefore
voxels of intermediate intensity on the inferior side of Sub should be
included because a very conservative visual segmentation of only the
brightest voxels might result in an underestimation of Sub (see (Bronen
and Cheung, 1991; Wisse et al., 2016c)).

2.5.3.3. CA2 and CA3 segmentation starts. Neuroanatomical data
indicate that the anterior border of CA3 in the head falls within
3–5.4 mm relative to the start of the body (Ding and Van Hoesen,
2015). The segmentation of CA2 and CA3 therefore begins in the last
4.4 mm (=4 slices) of the HH. Although CA2 generally appears before
CA3 (Ding and Van Hoesen, 2015), there is limited information on the
exact distance between the two and on potential differences between
subjects. Therefore, we chose to start segmenting CA2 at the same slice
as CA3. Additionally, CA2 and CA3 show an alternating pattern in the
most anterior slices; we chose to simplify this and count all medial grey
matter towards CA3. Although we realize that we may count some
portions of CA2 towards CA1 or CA3, we chose for these simplifications
to achieve high reliability. Again, it might help to consider Fig. 7E and
E’ alongside this description. The border between CA1 and CA2 is
constructed orthogonal to the CA structures at one voxel medial of the
lateral boundary of DG; this is identical to the determination of the
previous CA1/Sub border rule only on the superior instead of the
inferior side. As in the previous section, if there is a cyst within DG that
establishes the most lateral border, the cyst is used instead of DG to
identify the CA1/CA2 border. The next step is to identify the point
where the uncus separates from hippocampus. In some cases, only the
fimbria is attached to both (Fig. 7E’). The border between CA2 and CA3
is extrapolated from that slice to more anterior slices (to include the last
4.4 mm of HH). It is constructed halfway between the most medial
point of the CA fields and the most lateral point of DG (it can therefore
only be determined after the medial border of CA3 is determined). For
all posterior slices, this border is determined slice by slice as a line
orthogonal to the structure. The detached uncus is defined as CA3
unless there is a hypointense line, which can be used to differentiate
between CA3 superiorly and DG inferiorly (Duvernoy et al., 2013)
(Fig. 7E’). The Sub/CA1 border also changes within the last 4.4 mm of
HH (Ding and Van Hoesen, 2015). As soon as the uncus separates from
hippocampus, the new border is marked at 1/4 from most lateral DG to
most medial hippocampus proper. This line is extrapolated anteriorly to
include the last 4 mm of HH (Fig. 7E’). In the HB, i.e. when the uncus
has disappeared, this border shifts to 1/2 from most lateral DG to most
medial hippocampus proper (Fig. 7F). This boundary is identified in the
same way on all posterior slices.

2.5.3.4. CA3 and DG differentiation. Unique to our protocol is the
delineation of CA3 and DG. Depending on image quality and
resolution, we propose two different rules. Both rules apply to the
whole HB and the most posterior HH slices where the uncus is only
connected via the fimbria. Many protocols have defined everything on

Fig. 7. Rules for hippocampal subfield segmentation shown on the relevant slices from anterior to posterior. Schematic descriptions of all rules are depicted in the first column. Specific
rule changes or new borders are indicated in red. Dashed lines are used, when the rule in question is inferred from another slice; e.g. the inferior Sub/CA1 border is defined in B, but the
superior Sub/CA1 border is defined in B' and extrapolated anteriorly. The relevant anatomical changes are indicated by white labels and arrows in the middle column, e.g. when the uncus
separates from the hippocampal body (HB), or the colliculi (Col) disappear. The resulting segmentation is shown in the last column; subiculum (Sub) in pink, CA1 in red, CA2 in green,
CA3 in yellow and dentate gyrus (DG) in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Heuristic rules for separation of DG and CA3 if the endfolial pathway is not visible.
(1) construct a line from middle most superior part of the hippocampus to medial DG
touching Sub; (2) from that point, draw a line laterally along the dark band until Sub
starts curving, (3) parallel to this intersect line 1 centrally between SRLM and outermost
extent of the hippocampus proper,; (4) centrally intersect line 3 orthogonally; (5) CA3
assigned to voxels superior to lines 3 and 4. Applied rules are shown in the lower panel;
unspecific hippocampal body (HB) in turquoise, subiculum (Sub) in pink, CA1 in red, CA2
in green, CA3 in yellow and dentate gyrus (DG) in blue. Compare the right panels for
visual segmentation based on the endfolial pathway on the same slice. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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the inner side of the SRLM as DG. Based on ex-vivo segmentations (Ding
and Van Hoesen, 2015; Mai et al., 2015) and the better contrast of T2
images and higher resolution of 7 T imaging, the visualization of the
endfolial pathway is possible, which can be used to more clearly
differentiate between CA3 and DG (see the full HB segmentations in
Fig. 3; also in (Parekh et al., 2015; Wisse et al., 2016c). The endfolial
pathway is followed from the medial edge of CA3 towards the point
where it intersects the SRLM. All voxels that lie supero-medially to this
line belong to CA3 (see Fig. 7F). However, if the endfolial pathway is
not identifiable, or the aim of the research project is a comparison of
groups where the endfolial pathway cannot be reliably distinguished in
one group, an approximation can be achieved pursuing the following
rules alongside Fig. 8. First, construct a line from the middle and most
superior part of the hippocampus to the medial edge of DG touching
Sub (Fig. 8-1). From the latter point, draw a line laterally along the dark
band until Sub starts curving (Fig. 8-2). Then, compose a line parallel to
this which centrally intersects the first line (Fig. 8-3) between the
outermost extent of hippocampus until it intersects the SRLM. On the
halfway point construct an orthogonal line towards the superior SRLM
and close CA3 infero-laterally (Fig. 8-4). All voxels lying superiorly to
those lines belong to CA3 (Fig. 8-5).

2.5.3.5. Subfield segmentation ends. As described for the end of HB
above, subfield segmentation stops when the colliculi (see Fig. 7F’) have
disappeared entirely. This rule applies hemisphere-specific (Fig. 7G;
also Supplementary Fig. 2). Afterwards, manual subfield segmentation
is no longer reliable.

2.5.4. General advice for manual segmentation
Segmentation of all regions is accomplished by tracing along white-

to-grey matter boundaries, and several hypointense lines. These lines
are not always continuous; we therefore recommend attempting smooth
curvature even if the hypointense lines are discontinuous. Additionally,
switching back and forth between coronal slices should ensure smooth
transitions between slices, and avoid sudden jumps between regions.
This is most important along the SRLM between Sub and CA1 in HH, at
the endfolial pathway between CA3 and DG in HB, and for better
identification of the sulcal pattern in PrC. Furthermore, special care is
needed when measuring the depth of CS, because only slight variations
can lead to different rule sets being required, i.e. at 7 mm rules for a
shallow sulcus apply and at 7.1 mm rules for deep sulci apply (see
Supplementary Fig. 3, see rules 2.5.2.4.1; for impact of incorrect
measurements see also results 3.1).

As shown above, there are many cross-references between areas,
therefore we recommend defining certain key decision points prior to
segmentation (see Fig. 9). For example, the beginning and end of HH
are needed as a reference for the start and end of ErC and areas 35 and
36. Additionally, we advise to check the full segmentation at the end
(for a checklist, see Supplementary Fig. 10).

2.6. Statistical analyses

Two experienced raters (A.H. and A.L.) traced all subregions in the
same 16 hemispheres independently (8 left and 8 right, 8 type I and 8
type II CS patterns). Both raters have each segmented around 40 sub-
jects with the current rules prior to reliability testing. During that time,
they met twice a week to discuss difficult cases, rule exceptions, to
implement rule changes and confer with S.-L.D. (e.g. the very shallow
CS category was only introduced after specific feedback from S.-L.D.).
From 14 subjects only one hemisphere was included, but from one
subject two hemispheres were included to reach an equal number of
type I and II CS patterns. In addition all subregions were segmented for
a second time by one rater (A.H.) after 4 weeks.

The intra-rater reliability was assessed in 16 hemispheres in terms of
relative overlap between the two time-points using the Dice similarity
index (DSI) (Dice, 1945). The DSI was calculated for each MTL

subregion. The consistency of volume measurements within one rater
was assessed using intraclass correlation coefficients (ICC) using SPSS
22 (IBM SPSS Statistics for Macintosh, Version 22.0. Armonk, NY: IBM
Corp.). The ICC variant that measured absolute agreement under a 2-
way mixed ANOVA model was used (ICC(3), (Shrout and Fleiss, 1979)).

The agreement of both raters was assessed in terms of relative
overlap using the DSI and was calculated as before. The consistency of
volume measurements between both raters was assessed using the ICC.
This time, the ICC variant that measured absolute agreement under a 2-
way random ANOVA model was used (ICC(2), (Shrout and Fleiss,
1979)). Due to the low ICC values for area 35 in type II CS patterns in
the first inter-rater reliability analysis, 8 additional hemispheres with
type II CS were segmented by both raters, after sulcus depth measure-
ments had been made more concrete in the protocol following careful
evaluation of the mismatches encountered during the first round.

Fig. 9. Exemplary segmentation profile. This anterior-to-posterior axis (i.e. along the
longitudinal axis of the hippocampus) illustrates the key decision points of this protocol
(numbers indicate mm distance from the first anterior slice in the protocol).
Extrahippocampal regions and hippocampal head (HH), body (HB) and tail (HT) divisions
are on the left; hippocampal subfields are depicted on the right. The start and end of each
structure are depicted in the same color; often they depend on certain landmarks, e.g. the
start and end of HH are used as a reference for the occurrence of the entorhinal cortex
(ErC), area 35 and area 36, and the parahippocampal cortex (PhC). Most of these points
are variable between brains but usually fall into a similar range as shown here. We re-
commend identifying these points prior to segmentation.
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Average subregion volumes (mean and standard deviation) were
calculated for the final 16 hemispheres for both raters (i.e. the 8 type I
hemispheres and the 8 type II hemispheres from the second iteration
after refinement of depth measurement).

3. Results

3.1. Reliability

3.1.1. Intra-rater reliability
Table 1 shows the intra-rater reliability of a single rater (A.H.) for

16 hemispheres (all from the first iteration). Almost all DSI values were
above 0.9. Regions that were smaller and more complicated, such as
CA2, CA3 and area 35, showed slightly lower values but were still over
0.85. ICCs were all above 0.95 with the exception of CA3, which was at
0.78 and may be explained by the more difficult but anatomically valid
separation from DG along the endfolial pathway.

3.1.2. Inter-rater reliability
In the first iteration, almost all DSI values were above 0.84. The DSI

for smaller, more complicated regions CA2, CA3 and area 35 was
slightly lower, though still over 0.77. Similarly, ICCs were above 0.87
for almost all subregions. The ICCs for DG and subiculum were slightly
lower though still above 0.76. However, the ICC for area 35 was 0.68,
and 0.47 for CA3. Since this number was discrepant from the remaining
values, all segmentations were checked to find out whether the rules for
CA3 were unclear and therefore could not be reliably implemented. An
error was found in one subject by one rater. In this subject, the number
of head slices in which CA3 was segmented was miscounted. As the last
head slice was correctly identified and implemented for other labels
depending on the most posterior head slice, we therefore concluded
that this was a counting error rather than misinterpretation of the
image or lack of clarity in the segmentation protocol with regard to
CA3. This error was corrected and the ICC increased to 0.78.

As an additional exploratory experiment, we performed reliability
analyses of area 35 and 36 separately for the type I and type II sulcal
variants. For area 36 the DSI was similar for the two types,

0.87 ± 0.02 for type I and 0.86 ± 0.04 for type II (see Table 2). The
ICC for area 36 for type II was 0.99, higher than 0.84 for type I. For area
35, the DSI for type I was slightly higher than type II; 0.84 ± 0.06 vs.
0.78 ± 0.07, but the difference was more notable for ICC of 0.87 for
type I and −0.12 for type II. Although the ICC for area 35 is higher for
type I as compared to type II, the absolute difference, or ‘measurement
error’, between the two raters is similar for both sulcal pattern types
(mean absolute difference: type I: 0.06 mL, type II: 0.07 mL) while the
range of volumes for type II is only a third of the range of type I (range
type I: 0.49–0.81 mL, type II: 0.59–0.72 mL). Thus, the absolute dif-
ference between the raters relative to the normal variation in the po-
pulation (the range) for type II is larger than for type I. This is further
illustrated in Bland-Altman plots in Supplementary Fig. 11. Ad-
ditionally, these plots show that neither rater had a bias as the differ-
ences lie around 0.

Further inspection of the segmentation of area 35 type II cases re-
vealed that a difference in segmentation between the two raters mainly
resulted from measuring the sulcal depth. A small difference in sulcal
depth, as can be seen in Fig. 5, can lead to a different segmentation rule.
We therefore refined the segmentation protocol with regard to the
sulcal depth measurements (see Supplementary Fig. 3). Following this
refinement of the protocol, ERC, area 35 and 36 were segmented in 8
new type II hemispheres by both raters. The results of the reliability
analyses for area 35 and 36 for these new type II hemispheres are
presented in Table 2. ICC and DSI for ErC were 0.86 and 0.87, for area
35 they were 0.83 and 0.9, and for area 36 0.88 for both.

As a result, the ICC and DSI for the combined type I and II cases
improved to over 0.84 for all three regions.

Table 3 shows the final results of all subregions for the comparison
of both raters (i.e. average of the 8 type I hemispheres and the 8 type II
hemispheres from the second iteration).

In addition, we tested the inter-rater reliability of the heuristic rule
for CA3 (see Fig. 8). ICC was 0.78, and average DSI was 0.79 indicating
that the heuristic rule could be applied as reliably as using the endfolial
pathway. We also compared the overlap between the two rules, there-
fore calculating an inter-rule DSI for all 32 hemispheres segmented by
the two raters, which was 0.63 ± 0.09. While this value is relatively
low, the upper limit for the “between-rule” DSI is given by the DSI
values of the inter-rater reliability for the two different sets of rules, i.e.
even with perfect agreement between the heuristic and anatomy-based
rules, the DSI would still only be 0.79. Volume comparisons revealed
that using the heuristic rule slightly underestimates CA3 (0.24 mL
compared to 0.31 mL) and overestimates DG (1.0 mL compared to
0.93 mL) as compared to a separation at the endfolial pathway. This
confirms that the heuristic rule is a good alternative to the anatomical
landmark. That is, if divergent from the endfolial pathway, in the ma-
jority of the slices CA3 will be underestimated, similar to all current
segmentation protocols for CA3.

3.2. Volumes in comparison to anatomy

Mean volumes across both raters are shown in Table 4. Due to very
different segmentation schemes for PrC as well as PhC, we did not
compare volumes of those regions to earlier studies (Insausti et al.,

Table 1
Intra-rater reliability of a single rater: dice similarity coefficient (DSI) and intraclass-
correlation coefficient (ICC).

DSI (mean ± SD) ICC

ErC 0.91 ± 0.01 0.98
Area 35 0.88 ± 0.02 0.97
Area 36 0.91 ± 0.02 0.96
PhC 0.93 ± 0.03 0.99
CA1 0.91 ± 0.02 0.98
CA2 0.87 ± 0.05 0.97
CA3 0.85 ± 0.03 0.78
DG 0.90 ± 0.02 0.98
Sub 0.92 ± 0.02 0.95
Hippocampus total 0.96 ± 0.01 0.97

ErC = entorhinal cortex, PhC = parahippocampal cortex, CA = cornu ammonis,
DG = dentate gyrus, Sub = subiculum.

Table 2
Inter-rater reliability for ErC, area 35 and 36 in type 1 and type 2 CS patterns separately: dice similarity coefficient (DSI) and intraclass-correlation coefficient (ICC) for 8 hemispheres in
each category.

DSI (mean ± SD) ICC

Type I Type II Type IIa Type I Type II Type IIa

ErC 0.88 ± 0.02 0.87 ± 0.03 0.86 ± 0.02 0.94 0.80 0.87
Area 35 0.84 ± 0.06 0.78 ± 0.07 0.83 ± 0.04 0.87 −0.12 0.90
Area 36 0.87 ± 0.02 0.86 ± 0.05 0.88 ± 0.03 0.84 0.99 0.88

ErC = entorhinal cortex.
a Results from a second inter-rater reliability analysis following refinement of segmentation rules.
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1998; Pruessner et al., 2002). Volumes of hippocampal subfields are
compared to studies that used manual segmentation procedures at 7 T
(Wisse et al., 2016c), automated approaches at 3 T (Iglesias et al., 2015;
Yushkevich et al., 2015b) and histological techniques (Simić et al.,
1997). The comparison of the mean volumes found in the current study
with the other manually derived volumes from Wisse et al. (2016c)
highlights the changes in the recent protocol and reflects the novel
anatomical findings from Ding et al. While CA1 has less volume com-
pared to earlier estimations, subiculum shows an increase in volume.
This probably relates to the new rule of subiculum segmentation in the
hippocampal head as well as the new boundary between CA1 and
subiculum in the hippocampal body. On the other hand, CA3 has in-
creased while DG has reduced volume compared to Wisse et al. (2016c).
Again, this most probably highlights our new rule which follows the
endfolial pathway to separate DG and CA3 more accurately. Using this
approach the portion of CA3 that folds into the DG is also segmented as
CA3, which should result in an increase in CA3 volume. Additionally,
hippocampal subfield volumes obtained with the current protocol ap-
proximate those obtained from post mortem studies (Iglesias et al.,

2015; Simić et al., 1997), especially for the subfields in the hippo-
campus proper.

4. Discussion

We have developed and tested a new protocol for manual segmen-
tation of the entorhinal cortex, perirhinal cortex (distinguishing area 35
and 36), parahippocampal cortex, and hippocampus as well as its
subfields including subiculum, CA1, CA2, CA3, and dentate gyrus, in-
vivo at 0.44 × 0.44 mm in-plane resolution using 7 T MRI. We showed
that our protocol had an intra-rater reliability ICC higher than 0.95,
except CA3 (0.78) and DSI higher than 0.85 and an inter-rater relia-
bility ICC higher than 0.76 and DSI higher than 0.81, except CA3
(> 0.78) for all regions in young adults. The strengths of the protocol
are outlined as follows.

First, we leveraged recent developments in neuroanatomy. This has
enabled us to incorporate more distinct rules than previously known.
Chiefly, subdivisions in HH and HB (Ding and Van Hoesen, 2015), PrC
(Ding and Van Hoesen, 2010) and PhC (Ding et al., 2016) have sub-
stantially extended earlier work as they provide more details on the
order of appearance and location of the subregions and additionally
provide information on between-subject variability in some of the re-
gions. These findings were incorporated in the current segmentation
protocol, e.g. the location of subregions in relation to different numbers
of digitations in the hippocampal head or folding patterns of the col-
lateral sulcus. Also note, that sectioning in one article (Ding and Van
Hoesen, 2015) was done perpendicular to the long axis of the hippo-
campus making it more comparable to the commonly used T2-weighted
images. The other two atlases (Ding and Van Hoesen, 2010; Ding et al.,
2016) were based on histology data sectioned in a coronal plane.
However, no histological data on extrahippocampal regions is currently
available with slices perpendicular to the long axis of the hippocampus.
Additionally, earlier protocols mostly collapsed across subregions of the
PrC instead of differentiating between medial and lateral parts (Insausti
et al., 1998; Pruessner et al., 2002) but see (Kivisaari et al., 2013;
Yushkevich et al., 2015b). We have extended that framework by dif-
ferentiating more specifically between area 35 and 36 using available
data from neuroanatomy (Ding and Van Hoesen, 2010). Another ex-
ample is the PhC, where studies have mostly included the posterior PhG
up to CS across the whole length of the hippocampal tail because of lack
of a well-established boundary (Pruessner et al., 2002; Yushkevich
et al., 2015a). However, a recent histological atlas (Ding et al., 2016)
disentangles the subdivisions of the posterior PhC. That is, the posterior
PhC not only consists of areas TH and TL of the PhG, but also area TF of
the fusiform gyrus. In addition, areas TL and TF extend further pos-
teriorly than area TH, which in most cases disappears (replaced with
ventral visual area V2) after the shallow parahippocampal-ligual sulcus
(PhligS) appears. Although the newly identified PhligS would be ana-
tomically the most valid landmark, it could not be reliably identified in
all subjects. We observed that the anterior part of the CaS in close
proximity to the PhligS can serve as a landmark, which can be dis-
tinguished reliably. The CaS is a rather conservative border and leads to
an exclusion of a portion of posterior PhC. However, as this posterior
portion also consists of visual area V2, its exclusion may benefit the
study of parahippocampal function. This fine-tuning of the segmenta-
tion protocol with more detailed information on the borders and ana-
tomical variability may further facilitate research on memory such as
different memory pathways in the MTL (Ranganath and Ritchey, 2012;
Reagh and Yassa, 2014; Das et al., 2015). Additionally, if the protocol is
validated in older populations, it may facilitate research on aging and
neurodegenerative diseases. For example, early stages of tau pathology
in Alzheimer's Disease constitute especially in the transentorhinal re-
gion and the entorhinal cortex (Braak and Braak, 1991; Ding et al.,
2009). The transentorhinal region as described by Braak and Braak
corresponds roughly to area 35 in this protocol. Therefore, detailed
measurements of these regions that closely follow the anatomy are

Table 3
Inter-rater reliability between two raters: dice similarity coefficient (DSI) and intraclass-
correlation coefficient (ICC).

DSI (mean ± SD) ICC

ErC◊ 0.87 ± 0.02 0.94
Area 35◊ 0.84 ± 0.05 0.87
Area 36◊ 0.87 ± 0.02 0.88
PhC 0.86 ± 0.12 0.94
CA1 0.84 ± 0.04 0.89
CA2 0.81 ± 0.06 0.92
CA3 0.78 ± 0.05 *0.79 ± 0.05 0.76 *0.78
DG 0.86 ± 0.03 0.76
Sub 0.85 ± 0.04 0.78
Hippocampus total 0.94 ± 0.01 0.98

ErC = entorhinal cortex, PhC = parahippocampal cortex, CA = cornu ammonis,
DG = dentate gyrus, Sub = subiculum.
◊These values contain 8 type 1 hemispheres from the first and 8 type 2 hemispheres from
the second iteration following a refinement of the segmentation rules.
*These values correspond to the alternative heuristic rule (see Fig. 8).

Table 4
Volumes of ErC, area 35, area 36, PhC and hippocampal subfields in mL.

Current study Simić
et al.
(1997)a

Iglesias
et al.
(2015)b

Yushkevich
et al.
(2015b)c

Wisse
et al.
(2016c)d

ErC 0.99 ± 0.2 – – – 0.53
Area 35 0.64 ± 0.11 – – – –
Area 36 2.22 ± 0.39 – – – –
PhC 0.58 ± 0.24 – – – –
Sub 1.07 ± 0.16 –e 0.64f 0.34 0.63
CA1 0.82 ± 0.15 0.64 0.52 1.25 1.48
CA2 0.07 ± 0.02 – – 0.018 0.07
CA3 0.17 ± 0.02 – – 0.067 0.12
CA2 & 3 0.24 0.14 0.18 0.085 0.19
DG(& CA4) 0.50 ± 0.09 0.31 0.46 0.76 0.80
Hippocampus total 3.16 ± 0.40 1.54 2.26 2.44 3.1

ErC = entorhinal cortex, PhC = parahippocampal cortex, CA = cornu ammonis,
DG = dentate gyrus, Sub = subiculum. We provide standard deviations for the data from
the current study.

a Data derived from Table 2 in Simić et al. (1997), ‘Normal’.
b Data derived from Table 3 in Iglesias et al. (2015), ‘Ex vivo atlas’.
c Data derived from Table 6 in Yushkevich et al. (2015b), ‘ASHS’, mean of right and left

side.
d Data derived from Table 1 in Wisse et al. (2016c), ‘Manual segmentation’, mean of

right and left side.
e Not shown because only entails subiculum and prosubiculum.
f Values for parasubiculum, presubiculum and subiculum were summed up from

Table 3 in Iglesias et al. (2015).
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critical to detect early disease effects in volume and regional thickness
measures (Wolk et al., 2017; Xie et al., 2017).

A second strength of this protocol is that we acquired more fine-
grained images using ultra-high resolution 7 T MRI, which enables a
more detailed delineation of smaller structures. In particular, the deli-
neation of hippocampal subfields in the head as well as the visual
distinction between CA3 and DG in the body benefit from the higher
resolution. As can be seen from Fig. 3 and Fig. 6, the appearance of
hippocampal head and presence of subfields can change drastically
from slice to slice. The thinner slices obtained at 7 T allow us to es-
tablish more precise segmentation rules for the hippocampal head –
that is, determining the distance between the appearance of subfields in
the order of 1 mm rather than the more frequently reported thickness of
2 mm. In addition, it likely also allows for a more reliable segmentation.
This may add value when investigating diseases or cognitive functions
for which the anterior portion of the hippocampus is proposed to be
specifically important (Sahay and Hen, 2007; Poppenk et al., 2013).
Additionally, we propose the use of the endfolial pathway, a white
matter band aligned with the actual border of CA3, to separate CA3
from the DG in the hippocampal body in populations where it is visible.
This accurate distinction of DG and CA3 may enable functional MRI
studies to dissociate the contributions of DG and CA3, because they are
assumed to be involved in different cognitive processes (Neunuebel and
Knierim, 2014). Although some of our rules are still geometrical in
nature, the rules follow neuroanatomy more closely and take between-
subject variability into account where possible. Additionally, most rules
are independent of the in-plane orientation of the MTL; that is, most
boundaries are drawn perpendicular to the structure rather than being
based on the image orientation.

Thirdly, the protocol provides more detailed instructions for re-
plication than previous protocols in the literature. We have included
comprehensive slice-by-slice plots of high-resolution images that show
the application of the rules along the full longitudinal axis for the most
prevalent sulcal patterns – a continuous type 1 as well as a dis-
continuous type II CS (Ding and Van Hoesen, 2010). In addition, we
provide practical segmentation tips, a checklist for segmentation
(Supplementary Fig. 10), schematic descriptions of the rules throughout
the protocol, a decision tree for the segmentation of area 35 and ex-
amples of some difficult cases in the supplemental material. To further
facilitate the understanding of our rules, we incorporated specific
feedback from a workshop on our protocol in Magdeburg. One of our
main aims was to understand the difficulties that novice raters en-
counter while learning to apply the protocol rules. During the workshop
we identified the most common difficulties and adjusted the protocol
accordingly. For example, it became clear that the frequent cross-re-
ferencing to certain anatomical structures (e.g. uncal apex) was difficult
to follow. Therefore, we included recommendations in what order to
approach segmentation (exemplified in Fig. 9).

The high intra-rater reliability showed that the protocol could be
reliably applied, with DSI values higher than 0.85 and ICC values
higher than 0.95 with the exception of 0.78 for CA3. The latter is
probably due to the fact that we are using a more complex separation
along the endfolial pathway, or using the heuristic rule. Analyses of the
reliability between two raters showed that we were able to apply this
protocol in a consistent manner, with almost all DSI values above 0.84
and almost all ICC values over 0.89. Even for smaller regions and for
regions, such as area 35, for which the segmentation protocol is more
difficult to accommodate anatomical variants, the ICC and DSI were
reasonable (ICC over 0.68 for area 35 and over 0.76 for the other re-
gions and DSI over 0.77), showing that these smaller and more com-
plicated regions can be segmented with reasonable reliability. It should
be noted that the ICC for the DG and CA3 were also slightly lower,
which can be explained by the more complex separation as already
discussed for the intra-rater reliability. The overall high DSI values are
encouraging for the application of this protocol to functional MRI stu-
dies since spatial overlap is critical in this context.

In comparison to other studies, the ICC values and DSI values re-
ported here are well within the range of previously reported reliability
values (Prasad et al., 2004; Mueller et al., 2007; Yushkevich et al.,
2010; Bonnici et al., 2012; Palombo et al., 2013; Winterburn et al.,
2013; Goubran et al., 2014; Lee et al., 2014; de Flores et al., 2015).
Although some other studies reported slightly higher values for CA1
(Yushkevich et al., 2010; Shing et al., 2011; Lee et al., 2014) or sub-
iculum (Travis et al., 2014; de Flores et al., 2015), our protocol includes
more specific rules and may be more complicated. Additionally, the
reliability for small regions such as CA2 and CA3 are among the highest
reported in the literature. The ICCs for ErC, area 36 and PhC are also
well in the range of previously reported reliability values (Pruessner
et al., 2002; Feczko et al., 2009). The ICC value for area 35 was below
the reliability estimates of earlier protocols (combining area 35 and
36). When splitting up the group in the two types of sulcal patterns, it
became clear that this lower ICC value for area 35 was mainly driven by
the type II variant. Importantly, our aim to incorporate the findings
from histological studies (Ding and Van Hoesen, 2010) and match
anatomy as closely as possible resulted in a slightly more detailed
protocol with segmentation rules dependent on sulcal depth measure-
ments. Small differences in sulcal depth measurement could result in
different segmentation rules especially in the type II variant. After in-
itial evaluation of the results, we therefore refined the guidelines for
sulcal depth measurements (see Supplementary Fig. 3). A second re-
liability test in eight new type II hemispheres revealed an improved DSI
of 0.83 and ICC of 0.90 which is similar compared to type I hemi-
spheres. Although a learning effect could have affected the reliability
measures, it seems unlikely that this played a large role as both raters
had already segmented 40 subjects before the initial reliability test and
this second reliability test was performed in 8 new hemispheres. These
results indicate that with the refined segmentation protocol also a
challenging region such as area 35 in the type II variant can be seg-
mented reliably.

There are also limitations to the current study. First, by focusing
specifically on anatomical validity and accounting for anatomical
variability as much as possible, the resulting protocol is more elaborate
and time-consuming compared to earlier approaches. However, we
made considerable efforts to explain the protocol and make it under-
standable to novice raters. Additionally, we are planning to incorporate
this segmentation protocol into the ASHS automatic MTL segmentation
framework (Yushkevich et al., 2015b). A second limitation is that al-
though we tried to match anatomy as closely as possible, for some of the
borders we still use heuristic rules to improve reliability of the protocol.
This means that portions of subregions may be included in the labels of
adjacent subregions. Third, our protocol was mainly based on work
from Ding et al. and might not be in agreement with work from other
neuroanatomists. However, our protocol is largely consistent with other
neuroanatomical references (Insausti et al., 1998; Duvernoy et al.,
2013; Mai et al., 2015), and the volumes as obtained by the current
protocol approximate the volumes from post mortem studies, as shown
in Table 4 (Simić et al., 1997; Iglesias et al., 2015). The volume of the
subiculum is slightly larger as compared to Iglesias et al., which may be
due to the difference in age between the current study and the post
mortem studies as subiculum volume is suggested to be affected by age
(La Joie et al., 2010). It should be noted though that differences exist
between these and other references in terms of nomenclature, for ex-
ample the existence of the ‘prosubiculum’ and perhaps also in the pla-
cement of certain boundaries. Fourth, although we embrace the possi-
bilities provided by higher resolution, we are fully aware that not all
researchers have access to 7 T, which may limit the applicability of the
current protocol. In order to facilitate application to 3 T protocols, we
provided all segmentation rules in millimeters and have included
heuristic rules to guide segmentation of CA3 and DG when the anato-
mical landmark, the endfolial pathway, is not visible. Indeed we are
currently trying out this segmentation protocol in a set of older adults
and patients with MCI for whom a high resolution
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0.4 × 0.4 × 1.2 mm3 T2-weighted 3 T MRI was obtained. Of note, al-
though most studies on MTL subregions are using 3 T imaging proto-
cols, 7 T might play a more prominent role in the future with an in-
creasing number of sites with access to a 7 T scanner. For example, the
European Ultrahigh-Field Imaging Network for Neurodegenerative
Diseases (EUFIND) was founded recently with the aim to summarize
and investigate the potential of ultrahigh-field imaging in neurode-
generative research (http://www.neurodegenerationresearch.eu/
initiatives/annual-calls-for-proposals/closed-calls/brain-imaging-
working-groups-2016/brain-imaging-working-groups/). Finally, the
distance between appearance of the different subfields is given in mil-
limeters, although lengths of the MTL and hippocampus differ between
individuals and might be affected by disease. It is unclear how this
affects subfield measurements in the current protocol; a limitation true
for all current segmentation protocols. Although a potential solution
could be to provide relative distances rather than absolute distances
between subregions, based on the total length of the MTL; this would
further complicate the protocol. Additionally, the relative distance be-
tween subfields is not necessarily similar between subjects nor are they
similarly affected by disease. Using this measure would therefore in-
herently also induce a measurement error.

The current protocol is not meant to replace the protocol of the
harmonization effort for hippocampal subfields (www.
hippocampalsubfields.com) or hamper the progress of this collabora-
tive effort of many groups in various disciplines aiming to harmonize all
the different protocols for hippocampal and parahippocampal sub-
regions (Wisse et al., 2016a). Due to the iterative and thorough nature
of the harmonization effort, the timeline for development of protocols
for parahippocampal subregions and 7 T images are further down the
road and the current protocol is therefore meant to facilitate the seg-
mentation of MTL regions, and especially parahippocampal subregions,
for centers with a 7 T scanner in the meantime.

In summary, we present a protocol to delineate medial temporal
lobe structures as well as hippocampal subfields and provide evidence
that it can be reliably applied. The inclusion of the most recent ana-
tomical literature guiding the detailed subdivision of MTL regions and
hippocampal subfields will make this an especially useful protocol for
the investigation of the functional role of MTL subregions using fMRI,
as well as research on the effect of exercise on MTL subregions and their
differential relation with depression, autism, aging and neurodegen-
erative diseases.
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