578 research outputs found

    Bounds on the derivatives of the Isgur-Wise function from sum rules in the heavy quark limit of QCD

    Get PDF
    Using the OPE and the trace formalism, we have obtained a number of sum rules in the heavy quark limit of QCD that include the sum over all excited states for any value jPj^P of the light cloud. We show that these sum rules imply that the elastic Isgur-Wise function Ο(w)\xi (w) is an alternate series in powers of (w−1)(w-1). Moreover, we obtain sum rules involving the derivatives of the elastic Isgur-Wise function Ο(w)\xi (w) at zero recoil, that imply that the nn-th derivative can be bounded by the (n−1)(n-1)-th one. For the curvature σ2=Οâ€Čâ€Č(1)\sigma^2 = \xi''(1), this proves the already proposed bound σ2≄54ρ2\sigma^2 \geq {5 \over 4} \rho^2. Moreover, we obtain the absolute bound for the nn-th derivative (−1)nΟ(n)(1)≄(2n+1)!!22n(-1)^n \xi^{(n)}(1) \geq {(2n+1)!! \over 2^{2n}}, that generalizes the results ρ2≄34\rho^2 \geq {3 \over 4} and σ2≄1516\sigma^2 \geq {15 \over 16}.Comment: 9 pages, Late

    Resumming the color-octet contribution to e+ e- -> J/psi + X

    Full text link
    Recent observations of the spectrum of J/psi produced in e+ e- collisions at the Upsilon(4S) resonance are in conflict with fixed-order calculations using the Non-Relativistic QCD (NRQCD) effective field theory. One problem is that leading order color-octet mechanisms predict an enhancement of the cross section for J/psi with maximal energy that is not observed in the data. However, in this region of phase space large perturbative corrections (Sudakov logarithms) as well as enhanced nonperturbative effects are important. In this paper we use the newly developed Soft-Collinear Effective Theory (SCET) to systematically include these effects. We find that these corrections significantly broaden the color-octet contribution to the J/psi spectrum. Our calculation employs a one-stage renormalization group evolution rather than the two-stage evolution used in previous SCET calculations. We give a simple argument for why the two methods yield identical results to lowest order in the SCET power counting.Comment: 27 pages, 7 figure

    The adjuvant treatment of kidney cancer: a multidisciplinary outlook

    Get PDF
    Approximately 70% of cases of kidney cancer are localized or locally advanced at diagnosis. Among patients who undergo surgery for these cancers, 30–35% will eventually develop potentially fatal metachronous distant metastases. Effective adjuvant treatments are urgently needed to reduce the risk of recurrence of kidney cancer and of dying of metastatic disease. To date, almost all of the tested adjuvant agents have failed to demonstrate any benefit. Only two trials of an autologous renal tumour cell vaccine and of the vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor sunitinib have shown positive results, but these have been criticized for methodological reasons and conflicting data, respectively. The results of two additional trials of targeted agents as adjuvant therapies have not yet been published. Novel immune checkpoint inhibitors are promising approaches to adjuvant therapy in kidney cancer, and a number of trials are now underway. An important component of the management of patients with kidney cancer, particularly those who undergo radical resection for localized renal cell carcinoma, is the preservation of kidney function to reduce morbidity and mortality. The optimal management of these patients therefore requires a multidisciplinary approach involving nephrologists, oncologists, urologists and pathologists

    Increased Yield of ttbb at Hadron Colliders in Low-Energy Supersymmetry

    Get PDF
    Light bottom squarks and gluinos have been invoked to explain the b quark pair production excess at the Tevatron. We investigate the associated production of ttbb at hadron colliders in this scenario, and find that the rates for this process are enhanced over the Standard Model prediction. If light gluinos exist, it may be possible to detect them at the Tevatron, and they could easily be observed at the LHC.Comment: 5p, references added, version accepted to PR

    Semileptonic B Decays into Excited Charmed Mesons (D1D_1, D2∗D^*_2) in HQEFT

    Get PDF
    Exclusive semileptonic B decays into excited charmed mesons (D1D_1, D2∗D^*_2) are studied up to the order of 1/mQ1/m_Q in the framework of the heavy quark effective field theory (HQEFT), which contains the contributions of both particles and antiparticles. Two wave functions η0b\eta^b_0 and η0c\eta^c_0, which characterize the contributions from the kinematic operator at the order of 1/mQ1/m_Q, are calculated by using QCD sum rule approach in HQEFT. Zero recoil values of other two wave functions Îș1â€Č\kappa'_1 and Îș2â€Č\kappa'_2 are extracted from the excited charmed-meson masses. Possible effects from the spin-dependent transition wave functions which arise from the magnetic operators at the order of 1/mQ1/m_Q are analyzed. It is shown that the experimental measurements for the branching ratios of B→D1lÎœB \to D_1 l\nu and B→D2∗lÎœB \to D^*_2 l\nu can be understood in the framework of HQEFT.Comment: 27 pages, RevTex, 4 figures, 3 tables, to be published in IJMP

    Radiation reaction and gravitational waves in the effective field theory approach

    Full text link
    We compute the contribution to the Lagrangian from the leading order (2.5 post-Newtonian) radiation reaction and the quadrupolar gravitational waves emitted from a binary system using the effective field theory (EFT) approach of Goldberger and Rothstein. We use an initial value formulation of the underlying (quantum) framework to implement retarded boundary conditions and describe these real-time dissipative processes. We also demonstrate why the usual scattering formalism of quantum field theory inadequately accounts for these. The methods discussed here should be useful for deriving real-time quantities (including radiation reaction forces and gravitational wave emission) and hereditary terms in the post-Newtonian approximation (including memory, tail and other causal, history-dependent integrals) within the EFT approach. We also provide a consistent formulation of the radiation sector in the equivalent effective field theory approach of Kol and Smolkin.Comment: 23 pages, 8 figure

    Constraints on Light Bottom Squarks from Radiative B-Meson Decays

    Full text link
    The presence of a light b-squark (with mass about 4 GeV) and gluino (with mass about 15 GeV) might explain the observed excess in b-quark production at the Tevatron. Though provocative, this model is not excluded by present data. The light supersymmetric particles can induce large flavor-changing effects in radiative decays of B mesons. We analyse the decays B->X_s gamma and B->X_{sg} in this scenario and derive restrictive bounds on the flavor-changing quark-squark-gluino couplings.Comment: 14 pages, 3 figures. One reference added. Final version published in Physics Letters

    Object knowledge modulates colour appearance

    Get PDF
    We investigated the memory colour effect for colour diagnostic artificial objects. Since knowledge about these objects and their colours has been learned in everyday life, these stimuli allow the investigation of the influence of acquired object knowledge on colour appearance. These investigations are relevant for questions about how object and colour information in high-level vision interact as well as for research about the influence of learning and experience on perception in general. In order to identify suitable artificial objects, we developed a reaction time paradigm that measures (subjective) colour diagnosticity. In the main experiment, participants adjusted sixteen such objects to their typical colour as well as to grey. If the achromatic object appears in its typical colour, then participants should adjust it to the opponent colour in order to subjectively perceive it as grey. We found that knowledge about the typical colour influences the colour appearance of artificial objects. This effect was particularly strong along the daylight axis

    Heavy bottom squark mass in the light gluino and light bottom squark scenario

    Full text link
    Restrictive upper bounds on the heavy bottom squark mass when the gluino and one bottom squark are both light are based on the predicted reduction of RbR_b (the fraction of ZZ hadronic decays to bbˉb \bar b pairs) in such a scenario. These bounds are found to be relaxed by the process Z→bb~ˉg~/bˉb~g~Z \to b\bar{\tilde b}{\tilde g}/{\bar b}{\tilde b}{\tilde g}, which may partially compensate for the reduction of RbR_b. The relaxation of bounds on the top squark and the scale-dependence of the strong coupling constant are also discussed.Comment: 9 pages, LaTeX, 2 figures, to be submitted to Phys. Lett. B, more discussions adde

    Radiative decays of light vector mesons in a quark level linear sigma model

    Get PDF
    We calculate the P0 to gamma gamma, V0 to P0 gamma and V0to V'0 gamma gamma decays in the framework of a U(3)xU(3) linear sigma model which includes constituent quarks. For the first two decays this approach improves results based on the anomalous Wess-Zumino term, with contributions due to SU(3) symmetry breaking and vector mixing. The phi to (omega,rho) gamma gamma decays are dominated by resonant eta' exchange . Our calculation for the later decays improves and update similar calculations in the -closely related- framework of vector meson dominance. We obtain BR(phi to rho gamma gamma)=2.5x10^{-5} and BR(phi to omega gamma gamma)=2.8x10^{-6} within the scope of the high-luminosity phi factories.Comment: 8 pages, submitted to Phys. Rev.
    • 

    corecore