35 research outputs found

    Genetic and Physiological Analysis of Iron Biofortification in Maize Kernels

    Get PDF
    BACKGROUND: Maize is a major cereal crop widely consumed in developing countries, which have a high prevalence of iron (Fe) deficiency anemia. The major cause of Fe deficiency in these countries is inadequate intake of bioavailable Fe, where poverty is a major factor. Therefore, biofortification of maize by increasing Fe concentration and or bioavailability has great potential to alleviate this deficiency. Maize is also a model system for genomic research and thus allows the opportunity for gene discovery. Here we describe an integrated genetic and physiological analysis of Fe nutrition in maize kernels, to identify loci that influence grain Fe concentration and bioavailability. METHODOLOGY: Quantitative trait locus (QTL) analysis was used to dissect grain Fe concentration (FeGC) and Fe bioavailability (FeGB) from the Intermated B73 × Mo17 (IBM) recombinant inbred (RI) population. FeGC was determined by ion coupled argon plasma emission spectroscopy (ICP). FeGB was determined by an in vitro digestion/Caco-2 cell line bioassay. CONCLUSIONS: Three modest QTL for FeGC were detected, in spite of high heritability. This suggests that FeGC is controlled by many small QTL, which may make it a challenging trait to improve by marker assisted breeding. Ten QTL for FeGB were identified and explained 54% of the variance observed in samples from a single year/location. Three of the largest FeGB QTL were isolated in sister derived lines and their effect was observed in three subsequent seasons in New York. Single season evaluations were also made at six other sites around North America, suggesting the enhancement of FeGB was not specific to our farm site. FeGB was not correlated with FeGC or phytic acid, suggesting that novel regulators of Fe nutrition are responsible for the differences observed. Our results indicate that iron biofortification of maize grain is achievable using specialized phenotyping tools and conventional plant breeding techniques

    A Review of Phytate, Iron, Zinc, and Calcium Concentrations in Plant-Based Complementary Foods Used in Low-Income Countries and Implications for Bioavailability

    Get PDF
    Plant-based complementary foods often contain high levels of phytate, a potent inhibitor of iron, zinc, and calcium absorption. This review summarizes the concentrations of phytate (as hexa- and penta-inositol phosphate), iron, zinc, and calcium and the corresponding phytate:mineral molar ratios in 26 indigenous and 27 commercially processed plant-based complementary foods sold in low-income countries. Phytate concentrations were highest in complementary foods based on unrefined cereals and legumes (∼600 mg/100 g dry weight), followed by refined cereals (∼100 mg/100 g dry weight) and then starchy roots and tubers (&lt; 20 mg/100 g dry weight); mineral concentrations followed the same trend. Sixty-two percent (16/26) of the indigenous and 37% (10/27) of the processed complementary foods had at least two phytate:mineral molar ratios (used to estimate relative mineral bioavailability) that exceeded suggested desirable levels for mineral absorption (i.e., phytate:iron &lt; 1, phytate:zinc &lt; 18, phytate:calcium &lt; 0.17). Desirable molar ratios for phytate:iron, phytate:zinc, and phytate:calcium were achieved for 25%, 70%, and 57%, respectively, of the complementary foods presented, often through enrichment with animal-source foods and/or fortification with minerals. Dephytinization, either in the household or commercially, can potentially enhance mineral absorption in high-phytate complementary foods, although probably not enough to overcome the shortfalls in iron, zinc, and calcium content of plant-based complementary foods used in low-income countries. Instead, to ensure the World Health Organization estimated needs for these minerals from plant-based complementary foods for breastfed infants are met, dephytinization must be combined with enrichment with animal-source foods and/or fortification with appropriate levels and forms of mineral fortificants. </jats:p
    corecore