6,838 research outputs found

    Keyed plugs and sockets prevent improper connections

    Get PDF
    Plugs and sockets individually keyed so that no plug can be mated with other than its proper socket facilitates multiple connection in electrical systems

    Science Galls Me: What is a Niche Anyway?

    Get PDF

    The Energy Expenditure of Recreational Ballroom Dance

    Get PDF
    International Journal of Exercise Science 7(3) : 228-235, 2014. The popularity of recreational ballroom dancing has increased dramatically in recent years. Yet, relatively little information is known regarding the physiological demands of ballroom dancing. The purpose of this study was to determine the energy requirements for recreational ballroom dancing. 24 participants volunteered including 12 women (mean ± SD: 21 ± 3 yrs, 165.8 ± 7.4 cm, 56.8 ± 11.1 kg) and 12 men (23 ± 1 yr, 175.5 ± 8.4 cm, 78.1 ± 15.6 kg). Gas exchange was recorded using a portable metabolic system during a series of five ballroom dances: Waltz, Foxtrot, Swing, Cha-Cha, and Swing. Each song was four minutes in duration, separated by a two minute rest period, totaling 30 minutes of testing. The intensity of each dance in metabolic equivalents (METs) is: Waltz = 5.3 ± 1.3, Foxtrot = 5.3 ± 1.5, Cha-Cha = 6.4 ± 1.6 and Swing = 7.1 ± 1.6 and 6.9 ± 1.7. Mean energy cost for the 30 minutes of testing was 5.88 ±1.7 kilocalories (kcal•min-1), 6.12 ± 1.2 METs. Mean energy cost and months of recreational dance experience were not significantly related (R2 = 0.04, p = 0.35). Energy expenditure of the follow partner was significantly related to the energy expenditure of the lead partner (R2 = 0.52, p \u3c0.01). Finally, this study validates the intensity of recreational ballroom dance as matching the criteria established by the American College of Sports Medicine for improving cardiorespiratory fitness and reducing the risk of chronic diseases

    Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord

    Get PDF
    In a previous report we showed that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) improved functional recovery after contusive spinal cord injury (SCI) in the non-immunosuppressed rat, although the MSCs themselves were not detected at the spinal cord injury (SCI) site [1]. Rather, the MSCs lodged transiently in the lungs for about two days post-infusion. Preliminary studies and a recent report [2] suggest that the effects of intravenous (IV) infusion of MSCs could be mimicked by IV infusion of exosomes isolated from conditioned media of MSC cultures (MSCexos). In this study, we assessed the possible mechanism of MSCexos action on SCI by investigating the tissue distribution and cellular targeting of DiR fluorescent labeled MSCexos at 3 hours and 24 hours after IV infusion in rats with SCI. The IV delivered MSCexos were detected in contused regions of the spinal cord, but not in the noninjured region of the spinal cord, and were also detected in the spleen, which was notably reduced in weight in the SCI rat, compared to control animals. DiR "hotspots" were specifically associated with CD206-expressing M2 macrophages in the spinal cord and this was confirmed by co-localization with anti-CD63 antibodies labeling a tetraspanin characteristically expressed on exosomes. Our findings that MSCexos specifically target M2-type macrophages at the site of SCI, support the idea that extracellular vesicles, released by MSCs, may mediate at least some of the therapeutic effects of IV MSC administration

    Relayed nuclear Overhauser enhancement sensitivity to membrane Cho phospholipids

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155956/1/mrm28258_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155956/2/mrm28258.pd

    Measurement of ψ(2S)\psi(2S) decays to baryon pairs

    Full text link
    A sample of 3.95M ψ(2S)\psi(2S) decays registered in the BES detector are used to study final states containing pairs of octet and decuplet baryons. We report branching fractions for ψ(2S)→ppˉ\psi(2S)\to p\bar{p}, ΛΛˉ\Lambda\bar{\Lambda}, Σ0Σˉ0\Sigma^0\bar{\Sigma}{}^0, Ξ−Ξˉ+\Xi^-\bar{\Xi}{}^+, Δ++Δˉ−−\Delta^{++}\bar{\Delta}{}^{--}, Σ+(1385)Σˉ−(1385)\Sigma^+(1385)\bar{\Sigma}{}^-(1385), Ξ0(1530)Ξˉ0(1530)\Xi^0(1530)\bar{\Xi}{}^0(1530), and Ω−Ωˉ+\Omega^-\bar{\Omega}{}^+. These results are compared to expectations based on the SU(3)-flavor symmetry, factorization, and perturbative QCD.Comment: 22 pages, 21 figures, 4 table

    Study of the P-wave charmonium state \chi_{cJ} in \psi(2S) decays

    Full text link
    The processes ψ(2S)→γπ+π−\psi(2S)\to \gamma \pi^+ \pi^-, γK+K−\gamma K^+ K^- and γppˉ\gamma p \bar{p} have been studied using a sample of 3.7×1063.7 \times 10^6 produced ψ(2S)\psi(2S) decays. We determine the total width of the χc0\chi_{c0} to be Γχc0tot=14.3±2.0±3.0\Gamma^{tot}_{\chi_{c0}} = 14.3\pm 2.0\pm 3.0 MeV. We present the first measurement of the branching fraction B(χc0→ppˉ)=(16.3±4.4±5.4)×10−5B(\chi_{c0} \to p \bar{p}) = (16.3 \pm 4.4 \pm 5.4)\times 10^{-5}, where the first error is statistical and the second one systematic. Branching fractions of χc0,2→π+π−\chi_{c0,2} \to \pi^+ \pi^- and K+K−K^+ K^- are also reported.Comment: 10 pages, revtex, 3 figures, 2 table
    • …
    corecore