177 research outputs found

    Simulation Study of an LWFA-based Electron Injector for AWAKE Run 2

    Full text link
    The AWAKE experiment aims to demonstrate preservation of injected electron beam quality during acceleration in proton-driven plasma waves. The short bunch duration required to correctly load the wakefield is challenging to meet with the current electron injector system, given the space available to the beamline. An LWFA readily provides short-duration electron beams with sufficient charge from a compact design, and provides a scalable option for future electron acceleration experiments at AWAKE. Simulations of a shock-front injected LWFA demonstrate a 43 TW laser system would be sufficient to produce the required charge over a range of energies beyond 100 MeV. LWFA beams typically have high peak current and large divergence on exiting their native plasmas, and optimisation of bunch parameters before injection into the proton-driven wakefields is required. Compact beam transport solutions are discussed.Comment: Paper submitted to NIMA proceedings for the 3rd European Advanced Accelerator Concepts Workshop. 4 pages, 3 figures, 1 table Changes after revision: Figure 2: figures 2 and 3 of the previous version collated with plots of longitudinal electric field Line 45: E_0 = 96 GV/m Lines 147- 159: evaluation of beam loading made more accurate Lines 107 - 124: discussion of simulation geometry move

    A Comprehensive Economic Stimulus for our Failing Economy

    Full text link
    This paper presents a comprehensive plan to fix the ailing American economy, through a five-step approach. First, the Federal Reserve must continue to broaden the scope of monetary policy, by purchasing and selling long-term securities. Manipulating expectations through FOMC statements is another tool at the Federal Reserve’s disposal. Secondly, the government must enact fiscal stimulus to stabilize the economy in the short and medium runs, through investment in infrastructure projects, green technology, fusion technology, and science education. Additionally, the new fiscal policy must tackle the mortgage meltdown, which is weighing down the entire economy. Third, the regulatory system must be changed to reduce the likelihood of another financial collapse, starting with the nationalization of the ratings agencies. Ratings should be updated faster, with a numeric grading system rather than the pre-existing letter grades. Fourth, our globalized economy insures that a coordinated globalized response is necessary to recover. Global cooperation to reduce inflation and avoid protectionist policies is vital. Finally, the American bailout policy must be made clear, only giving bailouts to companies that are sound but financially strapped and those that are too big to fail

    Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

    Get PDF
    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications

    Feasibility and safety of planned early discharge following laparotomy in gynecologic oncology with enhanced recovery protocol including opioid-sparing anesthesia

    Get PDF
    ObjectiveThis study aims to evaluate the feasibility and safety of planned postoperative day 1 discharge (PPOD1) among patients who undergo laparotomy (XL) in the department of gynecology oncology utilizing a modified enhanced recovery after surgery (ERAS) protocol including opioid-sparing anesthesia (OSA) and defined discharge criteria.MethodsPatients undergoing XL and minimally invasive surgery (MIS) were enrolled in this prospective, observational cohort study after the departmental implementation of a modified ERAS protocol. The primary outcome was quality of life (QoL) using SF36, PROMIS GI, and ICIQ-FLUTS at baseline and 2- and 6-week postoperative visits. Statistical significance was assessed using the two-tailed Student's t-test and non-parametric Mann–Whitney two-sample test.ResultsOf the 141 subjects, no significant demographic differences were observed between the XL group and the MIS group. The majority of subjects, 84.7% (61), in the XL group had gynecologic malignancy [vs. MIS group; 21 (29.2%), p < 0.001]. All patients tolerated OSA. The XL group required higher intraoperative opioids [7.1 ± 9.2 morphine milligram equivalents (MME) vs. 3.9 ± 6.9 MME, p = 0.02] and longer surgical time (114.2 ± 41 min vs. 96.8 ± 32.1 min, p = 0.006). No significant difference was noted in the opioid requirements at the immediate postoperative phase and the rest of the postoperative day (POD) 0 or POD 1. In the XL group, 69 patients (73.6%) were successfully discharged home on POD1. There was no increase in the PROMIS score at 2 and 6 weeks compared to the preoperative phase. The readmission rates within 30 days after surgery (XL 4.2% vs. MIS 1.4%, p = 0.62), rates of surgical site infection (XL 0% vs. MIS 2.8%, p = 0.24), and mean number of post-discharge phone calls (0 vs. 0, p = 0.41) were comparable between the two groups. Although QoL scores were significantly lower than baseline in four of the nine QoL domains at 2 weeks post-laparotomy, all except physical health recovered by the 6-week time point.ConclusionsPPOD1 is a safe and feasible strategy for XL performed in the gynecologic oncology department. PPOD1 did not increase opioid requirements, readmission rates compared to MIS, and patient-reported constipation and nausea/vomiting compared to the preoperative phase

    Understanding mechanisms of asphaltene adsorption from organic solvent on mica

    Get PDF
    The adsorption process of asphaltene onto molecularly smooth mica surfaces from toluene solutions of various concentrations (0.01-1 wt %) was studied using a surface forces apparatus (SFA). Adsorption of asphaltenes onto mica was found to be highly dependent on adsorption time and asphaltene concentration of the solution. The adsorption of asphaltenes led to an attractive bridging force between the mica surfaces in asphaltene solution. The adsorption process was identified as being controlled by the diffusion of asphaltenes from the bulk solution to the mica surface with a diffusion coefficient on the order of 10-10 m2/s at room temperature, depending on the asphaltene bulk concentration. This diffusion coefficient corresponds to a hydrodynamic molecular radius of approximately 0.5 nm, indicating that asphaltene diffuses to mica surfaces as individual molecules at very low concentration (e.g., 0.01 wt %). Atomic force microscopy images of the adsorbed asphaltenes on mica support the results of the SFA force measurements. The results from the SFA force measurements provide valuable insights into the molecular interactions (e.g., steric repulsion and bridging attraction as a function of distance) of asphaltenes in organic media and hence their roles in crude oil and bitumen production

    Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations

    Get PDF
    ​Leucine-rich repeat kinase 2 (​LRRK2) mutations are the most common genetic cause of Parkinson’s disease. ​LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson’s disease, but whether ​LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that ​LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase ​αTAT1 prevents association of mutant ​LRRK2 with microtubules, and the deacetylase inhibitor ​trichostatin A (​TSA) restores axonal transport. In vivo knockdown of the deacetylases ​HDAC6 and ​Sirt2, or administration of ​TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson’s disease

    Methodological advances in imaging intravital axonal transport.

    Get PDF
    Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer's disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions
    • …
    corecore