444 research outputs found

    Spaser Action, Loss Compensation, and Stability in Plasmonic Systems with Gain

    Full text link
    We demonstrate that the conditions of spaser generation and the full loss compensation in a resonant plasmonic-gain medium (metamaterial) are identical. Consequently, attempting the full compensation or overcompensation of losses by gain will lead to instability and a transition to a spaser state. This will limit (clamp) the inversion and lead to the limitation on the maximum loss compensation achievable. The criterion of the loss overcompensation, leading to the instability and spasing, is given in a analytical and universal (independent from system's geometry) form.Comment: 4 pages, 1 figur

    Reply to "Can gravitational dynamics be obtained by diffeomorphism invariance of action?"

    Get PDF
    In a previous work we showed that, in a suitable setting, one can use diffeomorphism invariance in order to derive gravitational field equations from boundary terms of the gravitational action. Standing by our results we reply here to a recent comment questioning their validity.Comment: Accepted for publication in PR

    Emission of light through thin silver films via near-field coupling to surface plasmon polaritons

    Get PDF
    Copyright © 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 88 (2006) and may be found at http://link.aip.org/link/?APPLAB/88/051109/1We show that the emission of light from a dye layer through an adjacent thin silver film is maximal for a silver thickness of approximately 50 nm. This effect is explained as the result of competition between enhancement of the electric field at the metal surface due to the excitation of a surface plasmon-polariton mode, the amount of power coupled to the surface plasmon-polariton mode, and the attenuation of the field transmitted through the silver, all three of which vary with metal thickness. We indicate how these findings may be of relevance in the design of some surface plasmon-polariton-based fluorescence biosensing schemes

    Broad-band polarization-independent total absorption of electromagnetic waves by an overdense plasma

    Full text link
    We have shown both experimentally and theoretically that polarization-independent broad-band absorption of electromagnetic waves by an overdense plasma, caused by surface plasmon-polaritons (SPP) excitation, can be achieved due to combination of two factors: a non-zero angle of incidence and a two-dimensional circular diffraction grating placed at a properly chosen distance in front of the plasma boundary. Direct detection of SPP has been achieved for the first time using a miniature antenna imbedded in the plasma.Comment: considerably broadened versio

    How visual information influences dual-task driving and tracking

    Get PDF
    The study examined the impact of visual predictability on dual-task performance in driving and tracking tasks. Participants (N = 27) performed a simulated driving task and a pursuit tracking task. In either task, visual predictability was manipulated by systematically varying the amount of advance visual information: in the driving task, participants drove at night with low beam, at night with high beam, or in daylight; in the tracking task, participants saw a white line that specified the future target trajectory for 200, 400 or 800 ms. Concurrently with driving or tracking, participants performed an auditory task. They had to discriminate between two sounds and press a pedal upon hearing the higher sound. Results show that in general, visual predictability benefited driving and tracking; however, dual-task driving performance was best with highest visual predictability (daylight), dual-task tracking performance was best with medium visual predictability (400 ms). Braking/reaction times were higher in dual tasks compared to single tasks, but were unaffected by visual predictability, showing that its beneficial effects did not transfer to the auditory task. In both tasks, manual accuracy decreased around the moment the foot pressed the pedal, indicating interference between tasks. We, therefore, conclude that despite a general beneficial impact of predictability, the integration of visual information seems to be rather task specific, and that interference between driving and audiomotor tasks, and tracking and audiomotor tasks, seems comparable

    TransverseDiff gravity is to scalar-tensor as unimodular gravity is to General Relativity

    Full text link
    Transverse Diffeomorphism (TDiff) theories are well-motivated theories of gravity from the quantum perspective, which are based upon a gauge symmetry principle. The main contribution of this work is to firmly establish a correspondence between TransverseDiff and the better-known scalar-tensor gravity --- in its more general form ---, a relation which is completely analogous to that between unimodular gravity and General Relativity. We then comment on observational aspects of TDiff. In connection with this proof, we derive a very general rule that determines under what conditions the procedure of fixing a gauge symmetry can be equivalently applied before the variational principle leading to the equations of motion, as opposed to the standard procedure, which takes place afterwards; this rule applies to gauge-fixing terms without derivatives.Comment: 10 pages; amsart style; v3: version as appeared in JCAP, redaction improve

    Photon losses depending on polarization mixedness

    Full text link
    We introduce a quantum channel describing photon losses depending on the degree of polarization mixedness. This can be regarded as a model of quantum channel with correlated errors between discrete and continuous degrees of freedom. We consider classical information over a continuous alphabet encoded on weak coherent states as well as classical information over a discrete alphabet encoded on single photons using dual rail representation. In both cases we study the one-shot capacity of the channel and its behaviour in terms of correlation between losses and polarization mixedness

    Midwest Guardrail System with Round Timber Posts

    Get PDF
    A modified Midwest Guardrail System (MGS) was developed by using small-diameter round wood posts. The barrier system was configured with three timber species: Douglas fir (DF), ponderosa pine (PP), and southern yellow pine (SYP). Barrier VII computer simulation, combined with cantilever post testing in a rigid sleeve and soil, was used to determine the required post diameter for each species. The recommended nominal sizes were 184 mm (7.25 in.) for DF, 203 mm (8 in.) for PP, and 190 mm (7.5 in.) for SYP. A grading criterion limiting knot size and ring density was established for each species. The recommended knot sizes were limited to 38 mm (1.5 in.) or smaller for DF, 89 mm (3.5 in.) or smaller for PP, and 64 mm (2.5 in.) or smaller for SYP. The minimum ring densities equaled or exceeded 6 rings per inch (rpi) for DF, 6 rpi for PP, and 4 rpi for SYP. Two guardrail systems— one using DF posts and another using PP posts—were crash tested according to the Test Level 3 requirements specified in NCHRP Report 350: Recommended Procedures for the Safety Performance Evaluation of Highway Features. Crash testing was not conducted on the SYP system because of the adequacy of previous testing on 184-mm (7.25-in.) diameter SYP posts in a standard W-beam guardrail system and post design strength comparable to that in the other two species. Both crash tests showed that the modified MGS functioned adequately for both wood species. Three round wood post alternatives were recommended as an acceptable substitute for the standard W152×13.4 (W6×9) steel post used in the MGS

    Real-time phase-shift detection of the surface plasmon resonance

    Full text link
    We investigate a method to directly measure the phase of a laser beam reflected from a metallic film after excitation of surface plasmon polaritons. This method permits real time access to the phase information, it increases the possible speed of data acquisition, and it may thus prove useful for increasing the sensitivity of surface plasmon based sensors

    On the Meaning of the Principle of General Covariance

    Full text link
    We present a definite formulation of the Principle of General Covariance (GCP) as a Principle of General Relativity with physical content and thus susceptible of verification or contradiction. To that end it is useful to introduce a kind of coordinates, that we call quasi-Minkowskian coordinates (QMC), as an empirical extension of the Minkowskian coordinates employed by the inertial observers in flat space-time to general observers in the curved situations in presence of gravitation. The QMC are operationally defined by some of the operational protocols through which the inertial observers determine their Minkowskian coordinates and may be mathematically characterized in a neighbourhood of the world-line of the corresponding observer. It is taken care of the fact that the set of all the operational protocols which are equivalent to measure a quantity in flat space-time split into inequivalent subsets of operational prescriptions under the presence of a gravitational field or when the observer is not inertial. We deal with the Hole Argument by resorting to de idea of the QMC and show how it is the metric field that supplies the physical meaning of coordinates and individuates point-events in regions of space-time where no other fields exist. Because of that the GCP has also value as a guiding principle supporting Einstein's appreciation of its heuristic worth in his reply to Kretschmann in 1918
    • …
    corecore