51 research outputs found

    Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    Get PDF
    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates

    Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: a [11C]PBR28 PET study

    Get PDF
    Repeated withdrawal from alcohol is clinically associated with progressive cognitive impairment. Microglial activation occurring during pre-clinical models of alcohol withdrawal is associated with learning deficits. We investigated whether there was microglial activation in recently detoxified alcohol-dependent patients (ADP), using [11C]PBR28 positron emission tomography (PET), selective for the 18kDa translocator protein (TSPO) highly expressed in activated microglia and astrocytes. We investigated the relationship between microglial activation and cognitive performance. Twenty healthy control (HC) subjects (45±13; M:F 14:6) and nine ADP (45±6, M:F 9:0) were evaluated. Dynamic PET data were acquired for 90 min following an injection of 331±15 MBq [11C]PBR28. Regional volumes of distribution (VT) for regions of interest (ROIs) identified a priori were estimated using a two-tissue compartmental model with metabolite-corrected arterial plasma input function. ADP had an ~20% lower [11C]PBR28 VT, in the hippocampus (F(1,24) 5.694; P=0.025), but no difference in VT in other ROIs. Hippocampal [11C]PBR28 VT was positively correlated with verbal memory performance in a combined group of HC and ADP (r=0.720, P<0.001), an effect seen in HC alone (r=0.738; P=0.001) but not in ADP. We did not find evidence for increased microglial activation in ADP, as seen pre-clinically. Instead, our findings suggest lower glial density or an altered activation state with lower TSPO expression. The correlation between verbal memory and [11C]PBR28 VT, raises the possibility that abnormalities of glial function may contribute to cognitive impairment in ADP

    Quantitative Organization of GABAergic Synapses in the Molecular Layer of the Mouse Cerebellar Cortex

    Get PDF
    In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess the ratio of GABAergic synapses on Purkinje cell dendrites versus those on interneurons. We generated a mouse model in which the GABAA receptor α1 subunit (GABAARα1) was selectively removed from Purkinje cells using the Cre/loxP system. Deletion of the α1 subunit resulted in a complete loss of GABAAR aggregates from Purkinje cells, allowing us to determine the density of GABAAR clusters in interneurons. In a complementary approach, we determined the density of GABA synapses impinging on Purkinje cells using α-dystroglycan as a specific marker of inhibitory postsynaptic sites. Combining these inverse approaches, we found that synapses received by interneurons represent approximately 40% of all GABAergic synapses in the molecular layer. Notably, this proportion was stable during postnatal development, indicating synchronized synaptogenesis. Based on the pure quantity of GABAergic synapses onto interneurons, we propose that mutual inhibition must play an important, yet largely neglected, computational role in the cerebellar cortex

    Aggravation of Chronic Stress Effects on Hippocampal Neurogenesis and Spatial Memory in LPA1 Receptor Knockout Mice

    Get PDF
    The lysophosphatidic acid LPA₁ receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA₁ receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.Male LPA₁-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice.These results reveal that the absence of the LPA₁ receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA₁ receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology

    Consumer emotional response as a predictor of preferences: A case of hotel style design

    Get PDF
    Master's thesis in International Hospitality ManagementAs the hospitality industry grows, so does the number of consumers booking hotels online. These consumers choose hotels based on webpage information such as hotel pictures and other promotional media. Given the importance of visual stimuli displayed on hotel webpages, little research effort has been devoted to the guests’ emotional response to hotel design. The aim of this study is to measure consumer’s emotional responses and how they can predict preferences in regards to hotel style design; the emotions we are referring to are those that are experienced by potential and current hotel customers and evoked by hotels. A within subjects experiment research design was utilized with a survey conducted from a convenience sample of 120 student respondents. Photo stimuli consisting of pictures from four different hotels was used to elicit emotional responses to hotel stimuli. A likert-type scale was utilized to measure the visual self-report of emotional responses and the corresponding hotel preferences. Results of the research show that hotel style design elicits emotional responses, and those emotional responses can be used to predict hotel preferences. Male respondents are more likely to report higher levels of negative emotional response than females, and non-Norwegian citizens are more likely to report higher levels of positive emotional response to hotel style design than Norwegians. These findings support previous literature regarding emotional response and preferences, and can be useful to hotel management to encourage measurement of their potential and current consumers’ emotional response to hotel style design in order to help predict the consumers’ preferences accordingly

    Decreased Volume of the Cerebral Ventricles on CT Images in Gilles de la Tourette’s Syndrome

    No full text
    The aim of the present study was to estimate the volume of the ventricular system comprising lateral plus third ventricles in patients with Gilles de la Tourette's syndrome on computed tomographic (CT) scannings using unbiased stereological principles and to compare that volume with a control group. We found a significantly reduced ventricular volume in 24 patients with Gilles de la Tourette's syndrome (GTS) compared with 28 controls
    corecore