1,033 research outputs found

    Wigner Measure Propagation and Conical Singularity for General Initial Data

    Full text link
    We study the evolution of Wigner measures of a family of solutions of a Schr\"odinger equation with a scalar potential displaying a conical singularity. Under a genericity assumption, classical trajectories exist and are unique, thus the question of the propagation of Wigner measures along these trajectories becomes relevant. We prove the propagation for general initial data.Comment: 24 pages, 1 figur

    Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot

    Get PDF
    Motional narrowing refers to the striking phenomenon where the resonance line of a system coupled to a reservoir becomes narrower when increasing the reservoir fluctuation. A textbook example is found in nuclear magnetic resonance, where the fluctuating local magnetic fields created by randomly oriented nuclear spins are averaged when the motion of the nuclei is thermally activated. The existence of a motional narrowing effect in the optical response of semiconductor quantum dots remains so far unexplored. This effect may be important in this instance since the decoherence dynamics is a central issue for the implementation of quantum information processing based on quantum dots. Here we report on the experimental evidence of motional narrowing in the optical spectrum of a semiconductor quantum dot broadened by the spectral diffusion phenomenon. Surprisingly, motional narrowing is achieved when decreasing incident power or temperature, in contrast with the standard phenomenology observed for nuclear magnetic resonance

    Association of Circulating Renin and Aldosterone With Osteocalcin and Bone Mineral Density in African Ancestry Families

    Get PDF
    Hypertension is associated with accelerated bone loss, and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62 and relative pairs: 1687). Participants underwent a clinical examination, dual-energy x-ray absorptiometry, and quantitative computed tomographic scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone/renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, comorbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both P<0.01). There were also significant genetic correlations between renin activity and whole-body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone/renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biological mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension

    Equilibration times in numerical simulation of structural glasses: Comparing parallel tempering and conventional molecular dynamics

    Full text link
    Generation of equilibrium configurations is the major obstacle for numerical investigation of the slow dynamics in supercooled liquid states. The parallel tempering (PT) technique, originally proposed for the numerical equilibration of discrete spin-glass model configurations, has recently been applied in the study of supercooled structural glasses. We present an investigation of the ability of parallel tempering to properly sample the liquid configuration space at different temperatures, by mapping the PT dynamics into the dynamics of the closest local potential energy minima (inherent structures). Comparing the PT equilibration process with the standard molecular dynamics equilibration process we find that the PT does not increase the speed of equilibration of the (slow) configurational degrees of freedom.Comment: 5 pages, 3 figure

    The cellular prion protein increases the uptake and toxicity of tdp-43 fibrils

    Get PDF
    Cytoplasmic aggregation of the primarily nuclear TAR DNA-binding protein 43 (TDP-43) affects neurons in most amyotrophic lateral sclerosis (ALS) and approximately half of frontotemporal lobar degeneration (FTLD) cases. The cellular prion protein, PrPC, has been recognized as a common receptor and downstream effector of circulating neurotoxic species of several proteins involved in neurodegeneration. Here, capitalizing on our recently adapted TDP-43 real time quaking induced reaction, we set reproducible protocols to obtain standardized preparations of recombinant TDP-43 fibrils. We then exploited two different cellular systems (human SH-SY5Y and mouse N2a neuroblastoma cells) engineered to express low or high PrPC levels to investigate the link between PrPC expression on the cell surface and the internalization of TDP-43 fibrils. Fibril uptake was increased in cells overexpressing either human or mouse prion protein. Increased internalization was associated with detrimental consequences in all PrP-overexpressing cell lines but was milder in cells expressing the human form of the prion protein. As described for other amyloids, treatment with TDP-43 fibrils induced a reduction in the accumulation of the misfolded form of PrPC, PrPSc, in cells chronically infected with prions. Our results expand the list of misfolded proteins whose uptake and detrimental effects are mediated by PrPC, which encompass almost all pathological amyloids involved in neurodegeneration

    Corrosion Preventive Compounds Lifetime Testing

    Get PDF
    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating

    High-resolution survey for planetary companions to young stars in the Taurus Molecular Cloud

    Full text link
    Direct imaging in the infrared at the diffraction limit of large telescopes is a unique probe of the properties of young planetary systems. We survey 55 single class I and class II stars in Taurus in the L' filter using natural and laser guide star adaptive optics and the near-infrared camera (NIRC2) of the Keck II telescope, in order to search for planetary mass companions. We use both reference star differential imaging and kernel phase techniques, achieving typical 5-sigma contrasts of ~6 magnitudes at separations of 0.2" and ~8 magnitudes beyond 0.5". Although we do not detect any new faint companions, we constrain the frequency of wide separation massive planets, such as HR 8799 analogues. We find that, assuming hot-start models and a planet distribution with power-law mass and semi-major axis indices of -0.5 and -1, respectively, less than 20% of our target stars host planets with masses >2 MJ at separations >10 AU.Comment: 16 pages, 14 figures, accepted for publication in MNRA

    Effect of quantum confinement on exciton-phonon interactions

    Get PDF
    We investigate the homogeneous linewidth of localized type-I excitons in type-II GaAs/AlAs superlattices. These localizing centers represent the intermediate case between quasi-two-dimensional (Q2D) and quasi-zero-dimensional localizations. The temperature dependence of the homogeneous linewidth is obtained with high precision from micro-photoluminescence spectra. We confirm the reduced interaction of the excitons with their environment with decreasing dimensionality except for the coupling to LO-phonons. The low-temperature limit for the linewidth of these localized excitons is five times smaller than that of Q2D excitons. The coefficient of exciton-acoustic-phonon interaction is 5 ~ 6 times smaller than that of Q2D excitons. An enhancement of the average exciton-LO-phonon interaction by localization is found in our sample. But this interaction is very sensitive to the detailed structure of the localizing centers.Comment: 6 pages, 4 figure

    Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most rapidly evolving gene families are involved in immune responses and reproduction, two biological functions which have been assigned to the carcinoembryonic antigen (CEA) gene family. To gain insights into evolutionary forces shaping the CEA gene family we have analysed this gene family in 27 mammalian species including monotreme and marsupial lineages.</p> <p>Results</p> <p>Phylogenetic analysis provided convincing evidence that the primordial CEA gene family in mammals consisted of five genes, including the immune inhibitory receptor-encoding <it>CEACAM1 </it>(CEA-related cell adhesion molecule) ancestor. Our analysis of the substitution rates within the nucleotide sequence which codes for the ligand binding domain of CEACAM1 indicates that the selection for diversification is, perhaps, a consequence of the exploitation of CEACAM1 by a variety of viral and bacterial pathogens as their cellular receptor. Depending on the extent of the amplification of an ancestral <it>CEACAM1</it>, the number of <it>CEACAM1</it>-related genes varies considerably between mammalian species from less than five in lagomorphs to more than 100 in bats. In most analysed species, ITAM (immunoreceptor tyrosine-based activation motifs) or ITAM-like motif-containing proteins exist which contain Ig-V-like, ligand binding domains closely related to that of CEACAM1. Human CEACAM3 is one such protein which can function as a CEACAM1 decoy receptor in granulocytes by mediating the uptake and destruction of specific bacterial pathogens via its ITAM-like motif. The close relationship between <it>CEACAM1 </it>and its ITAM-encoding relatives appears to be maintained by gene conversion and reciprocal recombination. Surprisingly, secreted CEACAMs resembling immunomodulatory CEACAM1-related trophoblast-specific pregnancy-specific glycoproteins (PSGs) found in humans and rodents evolved only in a limited set of mammals. The appearance of <it>PSG</it>-like genes correlates with invasive trophoblast growth in these species.</p> <p>Conclusions</p> <p>These phylogenetic studies provide evidence that pathogen/host coevolution and a possible participation in fetal-maternal conflict processes led to a highly species-specific diversity of mammalian CEA gene families.</p
    corecore