19,870 research outputs found

    Integrability and Disorder in Mesoscopic Systems: Application to Orbital Magnetism

    Get PDF
    We present a semiclassical theory of weak disorder effects in small structures and apply it to the magnetic response of non-interacting electrons confined in integrable geometries. We discuss the various averaging procedures describing different experimental situations in terms of one- and two-particle Green functions. We demonstrate that the anomalously large zero-field susceptibility characteristic of clean integrable structures is only weakly suppressed by disorder. This damping depends on the ratio of the typical size of the structure with the two characteristic length scales describing the disorder (elastic mean-free-path and correlation length of the potential) in a power-law form for the experimentally relevant parameter region. We establish the comparison with the available experimental data and we extend the study of the interplay between disorder and integrability to finite magnetic fields.Comment: 38 pages, Latex, 7 Postscript figures, 1 table, to appear in Jour. Math. Physics 199

    Explorer Satellite Electronics

    Get PDF
    A discussion is presented of the design restrictions and the philosophy which enabled the Explorer satellites to be first during the IGY to reveal the presence of a belt of intense cosmic radiation encircling the earth's equator. In addition, an indication of the amount and momentum of cosmic dust in the solar system was obtained from the Explorers. Methods used to obtain reliability in the transducing and communications system are described, together with interpretations of space-environment information as deduced from the narrow-band telemetry

    Ehrenfest-time dependence of counting statistics for chaotic ballistic systems

    Get PDF
    Transport properties of open chaotic ballistic systems and their statistics can be expressed in terms of the scattering matrix connecting incoming and outgoing wavefunctions. Here we calculate the dependence of correlation functions of arbitrarily many pairs of scattering matrices at different energies on the Ehrenfest time using trajectory based semiclassical methods. This enables us to verify the prediction from effective random matrix theory that one part of the correlation function obtains an exponential damping depending on the Ehrenfest time, while also allowing us to obtain the additional contribution which arises from bands of always correlated trajectories. The resulting Ehrenfest-time dependence, responsible e.g. for secondary gaps in the density of states of Andreev billiards, can also be seen to have strong effects on other transport quantities like the distribution of delay times.Comment: Refereed version. 15 pages, 14 figure

    Universality in chaotic quantum transport: The concordance between random matrix and semiclassical theories

    Get PDF
    Electronic transport through chaotic quantum dots exhibits universal, system independent, properties, consistent with random matrix theory. The quantum transport can also be rooted, via the semiclassical approximation, in sums over the classical scattering trajectories. Correlations between such trajectories can be organized diagrammatically and have been shown to yield universal answers for some observables. Here, we develop the general combinatorial treatment of the semiclassical diagrams, through a connection to factorizations of permutations. We show agreement between the semiclassical and random matrix approaches to the moments of the transmission eigenvalues. The result is valid for all moments to all orders of the expansion in inverse channel number for all three main symmetry classes (with and without time reversal symmetry and spin-orbit interaction) and extends to nonlinear statistics. This finally explains the applicability of random matrix theory to chaotic quantum transport in terms of the underlying dynamics as well as providing semiclassical access to the probability density of the transmission eigenvalues.Comment: Refereed version. 5 pages, 4 figure

    Testing Strictly Concave Rationality

    Get PDF
    We prove that the Strong Axiom of Revealed Preference tests the existence of a strictly quasiconcave (in fact, continuous, generically C (∞), strictly concave, and strictly monotone) utility function generating finitely many demand observations. This sharpens earlier results of Afriat, Diewert, and Varian that tested (“nonparametrically”) the existence of a piecewise linear utility function that could only weakly generate those demand observations. When observed demand is also invertible, we show that the rationalizing can be done in a C (∞) way, thus extending a result of Chiappori and Rochet from compact sets to all of R ( n ). For finite data sets, one implication of our result is that even some weak types of rational behavior — maximization of pseudotransitive or semtransitive preferences — are observationally equivalent to maximization of continuous, strictly concave, and strictly monotone utility functions

    Testing Strictly Concave Rationality

    Get PDF
    We prove that the Strong Axiom of Revealed Preference tests the existence of a strictly quasiconcave (in fact, continuous, generically C (∞), strictly concave, and strictly monotone) utility function generating finitely many demand observations. This sharpens earlier results of Afriat, Diewert, and Varian that tested (“nonparametrically”) the existence of a piecewise linear utility function that could only weakly generate those demand observations. When observed demand is also invertible, we show that the rationalizing can be done in a C (∞) way, thus extending a result of Chiappori and Rochet from compact sets to all of R ( n ). For finite data sets, one implication of our result is that even some weak types of rational behavior — maximization of pseudotransitive or semtransitive preferences — are observationally equivalent to maximization of continuous, strictly concave, and strictly monotone utility functions

    The square-kagome quantum Heisenberg antiferromagnet at high magnetic fields: The localized-magnon paradigm and beyond

    Get PDF
    We consider the spin-1/2 antiferromagnetic Heisenberg model on the two-dimensional square-kagome lattice with almost dispersionless lowest magnon band. For a general exchange coupling geometry we elaborate low-energy effective Hamiltonians which emerge at high magnetic fields. The effective model to describe the low-energy degrees of freedom of the initial frustrated quantum spin model is the (unfrustrated) square-lattice spin-1/2 XXZXXZ model in a zz-aligned magnetic field. For the effective model we perform quantum Monte Carlo simulations to discuss the low-temperature properties of the square-kagome quantum Heisenberg antiferromagnet at high magnetic fields. We pay special attention to a magnetic-field driven Berezinskii-Kosterlitz-Thouless phase transition which occurs at low temperatures.Comment: 6 figure

    Nonperiodic echoes from mushroom billiard hats

    Full text link
    Mushroom billiards have the remarkable property to show one or more clear cut integrable islands in one or several chaotic seas, without any fractal boundaries. The islands correspond to orbits confined to the hats of the mushrooms, which they share with the chaotic orbits. It is thus interesting to ask how long a chaotic orbit will remain in the hat before returning to the stem. This question is equivalent to the inquiry about delay times for scattering from the hat of the mushroom into an opening where the stem should be. For fixed angular momentum we find that no more than three different delay times are possible. This induces striking nonperiodic structures in the delay times that may be of importance for mesoscopic devices and should be accessible to microwave experiments.Comment: Submitted to Phys. Rev. E without the appendi
    corecore