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We present a semiclassical theory of weak disorder effects in small structures and
apply it to the magnetic response of non-interacting electrons confined in integrable
geometries. We discuss the various averaging procedures describing different ex-
perimental situations in terms of one- and two-particle Green functions. We dem-
onstrate that the anomalously large zero-field susceptibility characteristic of clean
integrable structures is only weakly suppressed by disorder. This damping depends
on the ratio of the typical size of the structure with the two characteristic length
scales describing the disord@lastic mean-free-path and correlation length of the
potentia) in a power-law form for the experimentally relevant parameter region.
We establish the comparison with the available experimental data and we extend
the study of the interplay between disorder and integrability to finite magnetic
fields. © 1996 American Institute of Physid$0022-24886)01310-3

I. INTRODUCTION

Electronic mesoscopic systems offer nowadays the possibility of being used as a laboratory
for studying quantum chaos. The main question of this novel discipline — the quantum signatures
of the underlying classical dynamics — can be addressed in microstructures defined on high
mobility semiconductor heterojunctions. This connection presents a considerable challenge to
experimentalists since it implies complicated fabrication processes and delicate measurements.
The challenge for theoreticians is not any less complicated since semiconductor microstructures
are very rich condensed matter systeiinsolving effects of temperature, confinement, disorder,
electron-electron and electron-phonon interactions) ethere the applicability and validity of
simple models has to be clearly established.

Within the simple model of a particle-in-a-billiard, important differences have been
predicted! and later measuretf in the transport through chaotic and integrable geometries. In the
former nearby trajectories diverge exponentially and periodic orbits are usually isolated; the latter
are characterized by having as many constants of motion in involution as degrees of freedom, and
periodic orbits are organized in families on invariant fofthaotic cavities exhibit a universal
behavior for the conductance fluctuations and weak-localization, characterized by a single scale.
On the contrary, integrable cavities do not show generic behavior presenting more fine-scale
fluctuations and a non-Lorentzian line-shape of the low-field magneto resistance. In the case of
thermodynamical properties like the magnetic susceptibility, the differences between chaotic and
integrable billiards are more spectacular since they involve an order-of-magnitude enhancement of
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the low-field susceptibility of integrable geometries compared to that of chaoticcohbsilike
the transport problem, the predicted different behavior according to the integrability of the under-
lying classical mechanics, has not been experimentally confirmed.

The residual disorder present in actual microstructures plays a special role in the quantum
chaos studies. Indeed, any perturbing potential, such as the one provided by the disorder, imme-
diately breaks the integrable character of the classical dynamics. Since small amounts of disorder
are unavoidable in actual microstructures, the question of whether or not integrable behavior
should be observed, naturally arises. It is then of foremost importance to establish if the differ-
ences between chaotic and integrable geometries persist when we go beyond the particle-in-a-box
model. This interplay between integrability and disorder is the main subject of this paper.

We start by characterizing the disorder. One limiting case is the absence of it, where the
dynamics is determined by the non-random confinement potépé&dicle-in-a-box ocleanmod-
elg). On the other extreme we have tHiéfusivelimit where the electron motion is a random walk
between the impurities and the confining effects are not important. The strength of the disorder in
the diffusive case is characterized by the transport mean freel patthe mean distance over
which the electron momentum is randomized. Whermbecomes of the order of the typical size
a of the microstructure, confinemeand disorder are relevant. Fbf>a we arrive at théallistic
regime where electrons can traverse the structure with a small drift in their momégting
along almost straight lingsand their dynamics is mainly given by the bounces off the walls of the
confining potential. In the ballistic regime the underlying classical mechanics still depends on the
geometry and we would like to understand the different role of disorder in integrable and chaotic
geometries.

For short range impurity potentialgas typically found in metallic sampleshe scattering is
isotropic (s-type) and the momentum is randomized after each collision with an impurity. There is
therefore only one length scale, nameély, characterizing the disorder. For smooth impurity
potentials(as typically realized in high-mobility microstructujeke scattering is forward directed
andl; may be significantly larger than the elastic mean free patbsociated to the total ampli-
tude diffracted by the disord&rThe regimel;>a>| is particularly interesting because it is
ballistic (since the classical mechanics is hardly affected by disprdbert the single particle
eigenstates are short lived. In a more technical language that we will precise in the sequel, we have
| given by a single-particle Green function ardy a two-particle Green functiochwe will study
the interplay between disorder and confinement for physical observables that depend on one- and
two-particle Green functions, concentrating on the magnetic susceptibility of individual and en-
sembles of ballistic microstructures.

The natural tools to attack the interplay between disorder and confinement are semiclassical
expansions since they transparently convey at the quantum level the information about the clas-
sical mechanics. Supersymmeéthand random matrix theories are quite powerful methods that
have been widely used in recent studies of quantum chaos and disordered $ystéms,are not
applicable to our regime of interest since they deal with the ergodic univéosaj time prop-
erties of completely chaotic systems. Diagrammatic perturbation theory for the disorder can de-
scribe the diffusive regim&, but calculations become exceedingly complicated when the confine-
ment and the detailed nature of the impurity potential has to be considered.

In our semiclassical approach we emphasize the dependence of disorder effects on the ratio
between the finite system size and the disorder correlation lengh showing that confined
systems exhibit strong deviations from the bulk-behavior. In particular we demonstrate that for
integrable geometries the effect of smooth disorder results in a power-law damping of the two-
particle Green function properties, and we compare this behavior with that expected in chaotic
systems. For completeness of the presentation we first briefly review in Sec. Il our work on the
magnetic response of clean systetisVe then develop in detail a treatment of disorder in
ballistic microstructures extending some preliminary wtrka Sec. Il we present the disorder
model and some general implications at the level of one- and two-particle Green functions. In
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Secs. IV and V we focus on the impurity averaged magnetic susceptibility for individual and
ensembles of microstructures.

II. ORBITAL MAGNETISM IN CLEAN SYSTEMS: A BRIEF REVIEW

A. Thermodynamic formalism

In this section we present the basic thermodynamical formalism for obtaining the orbital
magnetism within a semiclassical approach. We indicate the main ideas for its application to clean
microstructures® which will be further developed in Secs. IV and V in order to allow for the
treatment of static disorder. The principle is to derive thermodynamical expressions for the free
energy and the grand potential using a semiclassical approximation for the density of states. This
allows us to calculate physical observables such as the magnetic susceptibility for the canonical
and grand canonical ensembles.

For a system of electrons confined to an akeat temperaturd and subject to a perpendicu-
lar magnetic fieldH, the free energy(T,H,N) for a fixed numbeNN of electrons and the grand
potential Q(T,H,u) (representing the coupling to a particle reservoir with chemical potential
) are related by means of the Legendre transform

F(T,H,N)=uN+Q(T,H,u). (2.2
The canonical ¥) and grand canonicah(C®) susceptibilities of a confined electron gas are given
by
_ 1(F . 1(*Q
X—‘x(m)m’ X __K<W)w' @3

The grand potential can be expressed in the form

1
Q(T,H,M)=—Ef dEd(E) In[1+ exp(B(u—E))] 2.3

(with B=1/kgT) in terms of the single-particle density of statf€) which we decompose into
a smooth mean and oscillating part according to

d(E)=d(E) + d{E). (2.4)

As has first been noticed in the context of persistent currents in disordered tiagtistinction
betweeny and y®© may be of crucial importance in mesoscopic thermodynamics: Although the
number of electrons can be large for a mesoscopic system, the fa®t thdixed must be taken

into account(by working in the canonical formalismf a disorder or energy averaged magnetic
response of aensemblef isolated microsystems is examined. According to ey convenient
representation for the canonical free energy in terms of grand canonical quantities is obtained by
expanding the relationshi2.1) to second order i — u with a mean chemical potential being
implicitly defined by accommodatinly charge carriers with the mean number of states

N=N(z)=N(z). (2.5)

Here

N()= foxdEd<E>f<E—m 2.6

with the Fermi distribution function
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1
1+ exd B(E—w)]

N is obtained in Eq(2.5) by replacingd(E) byd_(E). This finally allows an expansion of the free

f(E—p)= (2.7

energy a¥’
F(N)=F°+AFY+AF®), (2.9
with
FO=uN+Q(p), (2.93
AFD =005 ), (2.9b
AF® = _1_(N°5°(m)2. (2.90
2d(u)

The functions°°{ ) andN°{ ) are expressed by means of E(&23) and(2.6), respectively,
upon inserting the oscillating pad*{E) of the density of state€.4). The leading order contri-
bution toF is given by the first two termE°+ AF () yielding the susceptibility calculated in the
grand canonical caseE° gives rise to thgtwo-dimensional diamagnetic Landau-susceptibility
which for billiard-like systems is expressed as for the bulk as

g€ -
X 2aem (219

with gs=2 the spin degeneracy.

B. Semiclassical treatment of susceptibilities

For a semiclassical computation AFY) and AF(®) and their derivatives with respect kb
we calculated®*{E,H) from the trace

d(E,H)=—%Im fdr Gg(r,r) (2.11
of the semiclassical one-particle Green function. Its contributiod’t§E) is given by
Ge(r’,r)=2 D, eXF{i(E_ﬂtz”, (2.12
T h 2
as the sum over all classical pathéf non-zero lengthjoining r to r’ at energyE.
5= pdo 2.13
“t

is the classical action integral along the path. The amplitudeD, takes care of the classical
probability conservation, ang; is the Maslov index.

The evaluation of the trace integré.11) for chaotic and integrable systems leads to the
Gutzwille* and Berry—Tabdr periodic-orbit trace formulas, respectively. In order to calculate
the magnetic susceptibility at small fields one has to carefully distinguistween the three
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possibilities of a chaotic billiard, the special case of an integrable billiard remaining integrable
upon inclusion of theH-field, and the more general case where the field acts as a perturbation
breaking the integrability of a regular structure.

Since our main interest in Secs. Ill, IV and V will be devoted to disorder effects on the
susceptibility of billiards being integrable at zefiafield we will focus here on the last case. There
neither Gutzwiller nor Berry—Tabor-trace formulas are directly applicable and, following Ozorio
de Almeida®® a uniform treatment of the perturbirtg-field is necessary. In the integrable zero-
field limit each closed trajectory belongs to a toiysand we can replacein the trace integral
(2.11) by angle coordinate® ; specifying the trajectory within th@ne-parameterfamily and by
the position®, on the trajectory. For small magnetic field the classical orbits can be treated as
essentially unaffected while the field acts merely on the phases in the Green function in terms of
the magnetic flux through the ared,,(0,) enclosed by each orbit of familyl. Evaluating the
trace integral2.11) along®, for the semiclassical Green function of an integrable system leads
in this approximation to a factorization of the density of states

d(E)= > Zu(H)dy(E) (2.14
M#0
into the contribution from the integrable zero-field limit
0 ~ a a
dy(E)=Dw cos kelm— 75— 7 (2.19

(L is the length of the orbits of familiv andSM the semiclassical weigh and the function

H.Zu(01)
@,

1 (2=
=5 d@lcos{Zﬂ- (2.16

containing theH-field dependenced§,=hc/e). CalculatingAF") from Eq.(2.9b and taking the
derivatives with respect tbl gives the grand canonical contribution to the susceptibility at small
magnetic field

(1) 2 2
X _ 24’77 (DO RT(TM) 0 d gM
v e (quA > 2 G @217
Here, 7, is the period of a closed orbit of familyl and
7l 7¢ B
RT(T)_Wy = (2.18

is a temperature damping factor which arises from the convolution integral ifREBj.and gives
an exponential suppression of long orbits. This is important from a physical as well as computa-
tional point of view, as conceptual difficulties associated with the questions of absolute conver-
gence of semiclassical expansions at zero temperature do not arise.

Eqg. (2.17 is the basic equation for the susceptibility of an individual microstructure. When
considering ensembles of ballistic microstructures however, an averagevér energy(.e.,
ke) or over the system size usually has to be performed and leads to variations in the phases
(actionsS/fh=kgL),) of the density of state€.15 which are much larger than2 Therefore,
x* vanishes upon ensemble average. In order to characterize the orbital magnetism of ensembles
we introduce thetypical susceptibility y® = (x?)¥? (the width of the distributionand the en-
semble averagg [its mean value, which is non-zero because of the t&f) in the expansion
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0 X X a

FIG. 1. Two representative periodic orbits characterizedkgyand x; belonging to the familyM =(1,1) (denoting one
bounce with each wallof a square billiard of length.

Eqg. (2.8)]. The typical and ensemble average susceptibilities are of theoretical interest since they
are based on two-particle Green functions and are relevant for the description of experiments on
ensembles of mesoscopic systems.

If we assume that there are no degeneracies in the lengths of orbits from different families
M we obtain fory®

(1)) 2 24 2 ) 4 RZ(T ) dZV" 2
X))o 0 (™M) 5 5 M
(XL) ( o M4 (27TA) EM: - dy(u) de) (2.19

In calculatingy, the grand canonical contributigift) from AF() vanishes under energy average
and the canonical correctiohF(® in Eq. (2.8) gives in semiclassical approximation using Eq.

(2.99
Y x?  24m? | @, \2< R:(7y) 4252
X X _ T o 0 T\™™) 5 5 M
XL Xu 0s° L (27TA> % 2 du(x) dnZ - (2.20

Egs. (2.17—(2.20 provide the general starting point for a computation of the susceptibility of
integrable billiards at small fields.

As an important example, which is also of experimental relevahee, will apply the results
to square billiards. At finite temperatupe is essentially given by the familiv=(1,1) of the
shortest, flux-enclosing periodic orbits depicted in Fig. 1. A complete treatment including families
of longer orbits is given in Ref. 6. Instead 6f; we use the lower reflection poin, as orbit
parameterization within the family. The orbits,1) have the unique length,;=2+22a and en-
close a normalized are&(x,) =4mxy(a—Xg)/a?. Computation oi:l‘fl(,u) for the square geom-
etry gives fory") [Eq. (2.17)]

XY fadx , . T
X o a 4
as a function of the total fluy=Ha? ®, with ®,=hc/e. The prefactor
XO:XL—S (kea)¥2Ry(L1y). (2.22
(V2m)>?

shows the kra)®*dependence typical fdnearly) integrable systems.

For the square geometry Eq€.19 and(2.20 for the susceptibilitiesy® andy (character-
izing different ensemble averagesan be reduced tfincluding only the dominant contributions
from the family (1,1)]
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¥ \/:

adXO
72 v \/_f (2.23
and
a ad
? zf dxof XO[/Z cosp. /) +. 7% coge. /)] (229
with
X°
Z:(\/— )3(kFa)RT(L11) (229

and . 7. =.7(xg) =.#(xy). Although the integralg2.21), (2.23, and (2.24 can be evaluated
analytically in the clean caséleading to Fresnel functions of the magnetic flyxhe above
expressions serve as suitable starting points for the study of disorder effects on ensembles of
microstructures discussed in Secs. IV and V.

lll. SEMICLASSICAL APPROACH TO WEAK DISORDER

Disorder is usually studied in terms of the ensemble average over impurity realizations, since
it is a perturbation of an electrostatic potential whose detailed nature is unknown. Typically,
guantum perturbation theory is followed by the average over the strengths and positions of the
impurities. This approach is suited for macroscopic metallic sanfpleih are self-averagingr
ensembles of mesoscopic sampledere different samples present different impurity configura-
tions). The possibility of measuring a single disordered mesoscopic sample poses a conceptual
difficulty since there is not an average process involved. When discussing the effect of disorder on
the orbital magnetism of microstructures, it is therefore necessary to distinguish between the
behavior of an individual sample and an ensemble.

Moreover, we have to consider the cases where the Fermi energy and size of the microstruc-
tures are kept fixed under impurity average and the cases where these parameters change with the
different impurity realizations. These various averages, that will be thoroughly discussed in the
remainder of the paper, can be expressed in terms of the impurity average of one- and two-particle
Green functions. Therefore we perform in this section a general treatment of disorder effects on
the basis of semiclassical expansions of Green functions. The Green function formalism, which is
useful for a wide range of physical problems, can be applied to thermodynamical quantities like
the magnetic susceptibilittSecs. IV and VY as well as to quantum transport problems.

1. Disorder models

Our basic assumptions for the treatment of disorder are the following: We study a spatially
random potential/(r) characterized by a correlation function

C(lr=r'h=(V(nV(r)) (3.1

with a typical correlation lengtl§ and a mean disorder strengifi=C(0). Wewill make use of
a Gaussian correlation

. (r—r’)?
C(|r=r'|)=C° exp(—4—§2> (3.2
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which allows us to derive analytical expressions for the disorder averages consideredbEhew.
disorder correlation functio(B.2) can be viewed as being generated by means of a realizatibn
a two-dimensional Gaussian disorder potential given by the sum

N:
S Y (r=Ry)?
V(r)—}j: 2 exp[ T ] (3.3

of the potentials ofN; independenimpurities located at point®; with uniform probability on an
areaV. The strengthsi; obey(ujuj,>=u25”,.The disorder strengthas defined in Eq(3.2)] is
u?n,

T 4mé?

(on (3.9

with n;=N;/V. For £&—0 this model yields the white noise case 6ffunction scatterers
V(r)=EJN‘u]-5(r— R;). We will use the model of Gaussian disorder for some analytical calcula-
tions and for numerical quantum simulations. However, the general results expressed in terms of
the correlation functiorC(|r—r’|) will be valid for any kind of disorder.

As we will show, disorder effects depend on several length scales: the elastic mean free path,
the Fermi-wavelength - of the electrons, the disorder correlation lengtand the sizea of the
microstructure. In the bulk case of an unconstrained two-dimensional electré2Rfa6) we will
distinguish between short rangé<{\¢) and finite range §>\g) disorder potentials. In the case
of a microstructure a third, long range regime fora>\; has to be considered. The cleanest
samples used in today experiments are in the finite range reajise> .24

2. Single-particle Green function

If we assume a microstructure with siz&>\g (a condition which is always met in litho-
graphically defined sampleand work in the finite range or long range regime, where the disorder
potential is smooth on the scale af, a semiclassical treatment is well justified. A natural
starting point is the semiclassical expressi¢hl? for the single-particle Green function
Gg(r’,r) as a sum over the contributions from classical paths. The classical mechanics of trajec-
tories with lengthL;<I; (the transport mean free patfs essentially unaffected by disorder.
Therefore the dominant effect on the Green function in Eq12 results from shifts in the
semiclassical phases due to the modification of the actions while the amplidydesl topologi-
cal indices#; are nearly unchanged. The first-order approximation to the classical 42tibd)
along a pathz; in a system with weak disorder potential is

S'=s+ 05, (3.5

where the clean actiof; is obtained by integrating along thaperturbedtrajectory Z ¢ without
disorder(i.e., S;=KkeL, in the case of billiards without magnetic figlthstead of the actual path
Z:. The correction term¥S; is obtained, after expanding= v2m[E—V(q)] for small V/E, by
the integral

B 1
0S=— ;Lgv(q)dq. (3.6

In this approximation an impurity averade ..) acts only onsS; and the disorder averaged
Green function reads

<GE(r’,r))=Z Ggyt(r’,r)<exr{;i—58[}>. 3.9
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Here Gg , is the contribution of the trajectortyto the zero-disorder Green functi@Gg .
For trajectories of length.;> ¢ the contributions toéS according to Eq.(3.6) from the
disorder potential at trajectory segments separated by a distance largef sinaruncorrelated.
The related stochastic accumulation of action along the path can therefore be interpreted as
determined by a random-walk process, resulting in a Gaussian distributié® (@f,). For larger
& or shorter trajectoriesl( 3 ¢£), one can still think of a Gaussian distribution of the de-phasing
6S; providedV(r) is generated by a sum of a large number of independent impurity potentials. As
a consequence of the Gaussian character of the distributio,¢f;), the disorder contribution

involved in Eq.(3.7) is given by
S 2
> = ex;{ - %} (3.8

i

and therefore entirely specified by the variance

1
<5Sf>=zfzcdq Lcdq%v(q)v(q’)), (3.9

which is expressed as the mean of the disorder correlation fun€iim—q’|) when the unper-
turbed orbit is traversed.

If we consider, to start with, an unconstrained 2DEG the sum in(&4) is reduced to the
direct trajectory joining andr’. If L=|r—r’|> ¢ the inner integral in Eq(3.9) can be extended
to infinity and we obtain

L
<552>:v‘£ f dg C(q). (3.10

The semiclassical average Green function for the bulk exhibits therefore an exponential
behaviot®?® (on a length scalé;>L> ¢)

L
<GE(r’,r)>=G°E(r’,r)exr<—§ : (3.11)
with the damping governed by an inverskastic mean free path
1 f dg C 3.1
T~ 722 g C(q). (3.12
In the case of Gaussian correlati@iq) is given by Eq.(3.2) and we get
h2vi
= ——. (3.13
g\mCo
Using the disorder strengit3.4) we have
4\/;ﬁ20,2:

In the Appendix we discuss the relation between the semiclassical elastic MBBS3.12—
(3.14)] and the MFP obtained from quantum diagrammatic perturbation theory for the bulk for the
disorder mode(3.3). The semiclassical and the quantum repit. (A5)] agree asymptotically to

J. Math. Phys., Vol. 37, No. 10, October 1996

Downloaded-10-Jul-=2007-t0-132.199.145.54.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://jmp.aip.org/jmp/copyright.jsp



5096 Richter, Ulimo, and Jalabert: Integrability and disorder in mesoscopic systems

leading order irkg€. In the limit of small¢, especially¢<\g, our semiclassical approach is no
longer applicablé® However, Eq.(3.11) still holds, but withl replaced byl 5 given in Eq.(A4).

We now turn from the semiclassical treatment of the bulk to that of a confined system. In the
constrained case in the linfit<a impurity scattering is the dominant procééghis gives rise to
diffusive motion, and thus there is no essential difference to the bulk for the damping of the Green
function. We will treat the ballistic regimk>a where both, the confinemeand the impurities
have to be considered. The calculation pin the Appendix shows that for finité the transport
MFP | is considerably larger than the elastic one and a ballistic treatment is therefore well
justified, even ifl is of the order of the system size.

In contrast to the bulk case a disorder averaged confined system is no longer translationally
invariant and one has to impose in quantum calculations the correct boundary conditions of the
geometry. Confinement implies semi-classically 8ar’,r) is given as a sum over all direct and
multiply reflected paths connectingandr’; disorder modifies the corresponding actions accord-
ing to Eq.(3.6).

In the regimes of short- and finite-range scatterers, the damping of each contrif@iignto
(Gg) is given, analogous to the bulk expressi@ill), [using Eq.(3.10] by

L
(GE(r’,r)>=Z G‘éjt(r’,r)ex;{—z—;). (3.19

Here,L is now replaced by the trajectory length>a>¢. This gives an individual damping
exp(—Ly/2l) for each geometry-affected path contributing{ @¢).

In the long range regime and fgr-a the correlation integral3.9) can no longer be approxi-
mated(as foré<L,) by Lf*% dg C(q) due to correlations across different sectors of an orbit
(with distance smalleg). Therefore, the orbit-geometry enters into the correlation integral. For
£>a we can, however, expar@(|r—r’|) and obtain in the case of Gaussian disor@gr to first
ordering=2) C(|r—r'|)=C%1—(r—r")?/(4£%)]. In this approximation the integr8.9) gives
for the Green function damping an exponent

(8F) _ 1 L[ 11
W—mﬁ(l“—)-

2 &
It=(1/Lt)f%t r2(g)dq can be regarded as the “moment of inertia” of the unperturbed trajectory
¢ with respect to its “center of mass” (Il()f%t r(g)dg. Eq. (3.16 shows that the damping in

the long range regime depends quadratically_pfin contrast to linear behavior in the finite range
case or bulk The length scale of damping is now given by the geometrical mean of the bulk MFP
| and £. The leading damping term does not depend on the specific orbit geometry since it
essentially reflects the fluctuation in the mean of thmooth potentials of different impurity
configurations. Inclusion of higher powers &f2 leads to additional contributions from higher
momentsf%tr”(q)dq on the RHS of Eq(3.16.

(3.16

3. Two-patrticle Green function

Density correlation functions in general or the typif&l. (2.19] and ensemble averaged
susceptibility Eqg. (2.20], which will be treated in the subsequent sections, involve the square of
the density of states. Writing the latter, EG-11), in terms of the difference between advanced
and retarded Green function&{ —G~) we are left with products of one-particle Green func-
tions. The terms of most interest are the cross producB*(r,r’)

X G (r,r")=G*(r,r"YG**(r',r), because they survive the energy average and are sensitive to
changes in the magnetic field.
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Since, in the non-interacting approach we are using, the two-particle Green function factorizes
into a product of one-particle Green functf8mve will use the former as a synonym for the latter.
The semiclassical average for products of single-particle Green functions will be quantitatively
performed for the susceptibility of confined integrable systems in Sec. V, and we discuss here the
underlying ideas for the general case.

Considering for instance the produg(r,,r,)G*(r;,r5), the effect of the disorder potential
can be taken into account perturbatively for each realization of the disorder in the same way as
before by Eqs(3.5—(3.6). Using the same kind of argument, one can therefore write the disorder
average as a double sum over the averaged contributions from trajettaries’

(e61)=3 3 (6e,6L)=3 3 Gf g (e )
t’ t’
C* 5 _5 r)2
=Z > Gg,Gg, exr{—%f{—q. (3.17
t!

It is necessary here, however, to take into account the correlation of the disorder potential between
points on trajectories andt’. One limiting case for instance would be thiandt’ are either the

same trajectory or the time reversal one of each other. In these cases their contribution acquires
exactly the same phase shift af@g Gt )=|Gg | Within our approximation the diagonal
contributionst=t’, which, e.g., are responsible for the classical part of the conductivity, remain
thus disorder-unaffected, since we assume the trajectories have a length much smaller ¢han
semiclassical consideration of these effects for trajectories of length of the ortierooflarger

was performed in Ref. 25 for the bulk, giving a damping of the two-point Green function on the
scale ofl;.) At the opposite extreme, if trajectories’ are completely uncorrelated, i.e., for long
trajectories in classical chaotic systems or trajectories in integrable systems with a spatial distance
larger tharé, the average in Eq3.17) factorizes:(GE,tG’E‘,t,)=(GE,t)~(G’E‘,t,) and lead to single-
particle damping behavior.

The double sum Eq(3.17) may however involve pairs of trajectories which stay within a
distance of the order @f (as for nearby paths on a torus of an integrable systhmnthis case the
behavior of<GE,tG’éyt,) is more complicated and depends of the confinement geometry of the
system under consideration. As a simple illustration of the interplay between disorder correlation
and families of orbits, let us consider for the case of the bulk the produ€(of,r,) joining
r,=(0,0) tor,=(L,0) with G*(ry,r5) joiningr,=(0y) tor,=(L,y), with L> ¢ buty possibly
of the order ofé. Introducing the function

K(y)= fﬁ:C(x,y)dx (3.18

[for Gaussian correlations E€B.2), K(y)/K(0)= exp(—y?(4£?)], the variance of the de-phasing
is obtained as

K(0)—K
(58— 057 =2L KOZKYD) )v W) (3.19
F

and thereford GG )= GEGE T(y) with

~ L K
f(y)= exp{—l—(l—%”. (3.20
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The function?(y) expresses in a very simple way thatyas 0, the effect of disorder disappears
(f(0)=1) while for y> ¢ the functionf(y) behaves as the square of single particle Green func-
tion damping.

IV. FIXED-SIZE IMPURITY AVERAGE OF THE MAGNETIC SUSCEPTIBILITY

We consider here a disorder averagéich will henceforth be called a fixed-size impurity
average of an ensemble of structures for which the parameters of the corresponding clean system
(geometry, size, chemical potenjiakmain fixed under the change of impurity realizations. In
Sec. V, we will then treat the more realistic case of the orbital magnetic responsesooftaned
energy(or size and disorder average.

As shown in the previous section, averages over weak disorder exponentially damp, but do not
completely suppress oscillatory contributigmgth phasekgL,) to the single-particle Green func-
tion from geometrical paths in confined systems. An observable quantity dependent on these
contributions is the disorder averaged susceptibility of an ensemble of billiards of the same size or
same clean-system Fermi energy, which will be studied first.

We will treat regular billiards at zero or small magnetic fields, where the integrability is
approximately maintained and the density of states hakltdependence of the formuld®.14)—

(2.16). The general result foy*), Eq. (2.1, formally persists with the replacement &%, by

242

H.Zu(04)

1 (2=
<%M(H)>:Efo d®l CO{ZWTO ex , (41)

where( 5Sf,|(®1)> is given by Eq(3.9) with the integrals performed along the orbits of the family
M parameterized b ;. In the finite range casgf all orbits of a familyM are of the same length
as in billiardg each family exhibits a unique disorder damping giving a contribution

532
Oad=xii- ex - %@) (42

to the ballistic susceptlbmtyx(l) is the contribution of familyM to the clean susceptibilitiEg.
(2.17] and( 8S5)/12h%=Ly/2l.

In the case of square billiards, where the dominant contribution stems from the fdndily
we obtain, in analogy with Eq2.21),

<X> <X(1)> a0|><o

5S(X0)) > 4.3

#2(Xg)COg @. //(xo))< sin( Kel g+ %-ﬁ- 7

with x° given by Eq.(2.22. For a square billiard®S(x,) is independent ok, for the finite- as
well as for the long-range regime sintg=a?/12 [entering into Eq(3.16)] is the same for all
orbits (11). Therefore Eq(4.2) with M =(1,1) holds for both limiting cases. In the same way as
for the damping of the one-particle Green functi@y. (3.19] we obtain for square billiards at
finite temperature in the finite range regime

Q0= =x4- eXD(—LZ—Tl), (4.9

Wherexd) denotes the susceptibility of the system without disorder.

In order to control the validity of our analytical semiclassical approximations we performed
numerical quantum calculations by diagonalizing the Hamiltonian for non-interacting particles in
a square hilliard subject to a uniform perpendicular magnetic field and a random disorder potential
of the form of Eq.(3.3. For a given selected correlation lengtha quantum mechanically
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calculated elastic MFR,;,, and a fixed Fermi momentuik the product of the impurity density
and squared mean impurity potentiaju?, is determined by Eq$A3) and (A4). We found that
our numerical results are essentially independent of the choice(afth u? adjusted according)y
for nj=200 and used this value for the calculations presented here. The posRjook the
impurities were chosen as independently distributed and foutivee used a box distribution.

Each impurity configuratiom has a self-averaging effect for amividual square billiardfor
£<a) due to the differences of the impurity potent\}(r) across the structure. In average
over an ensemble of square billiards, differences in the mean impurity potential
V,=(1/a%) [drV,(r) (the integral is taken over the area of the billinbétween different squares
lead to an additional damping. It is characterized by the variance

2 2

., un 1 5 a
(V)= a7 7 erf(n)+\/—;(e T=1)|; =28 (4.9
Uzni
e for ¢la—oe (4.6
un;
——z for ¢&-0. (4.7

In the limit of £>a our numerical calculations showed that the self-averaging effect is negligible
(since the impurity potential is essentially flat across the sqare the clean susceptibility of an
individual structure remains practically unaffected by disorder. In this limit variations in the mean
potentialV of an ensemblgEq. (4.6)] dominate the damping. In the limit of short range disorder,
fluctuations in the meal of different samples play a minor role and self-averaging is the
predominant process for an integrable system: In semi-classical terms different trajectories of a
family of closed orbits are perturbed by white noise disorder in an uncorrelated manner. Therefore
we do not observe considerable differences between the susceptibility of a single disordered
billiard of integrable geometry and the corresponding ensemblé<a. In a chaotic billiard this
self-averaging effect does not exigor not too small¢, see end of Sec. )Y since orbits are
isolated. Therefore distinct differences between an individual disordered sample and an ensemble
of disordered billiards are expected.

To improve the statistics of our numerical ensemble average for square billiards we performed
an average over disorder configurations with the same rieand in addition averaged ovét
according to Eq(4.5).2° Fig. 2 shows results of the numerical quantum simulations for the average
susceptibility( x) of an ensemble of squares with fixed size but different disorder realizations at a
temperaturekgT=3g;A, whereA is the mean level spacing. The characteristic oscillations in
kra show an interchange between para- and dia-magnetic behavior on &stcgle This indi-
cates that they are dominated by contributions from the shortest flux-enclosing orbits of the family
(1,1) [according to Egs(2.17) and(4.3)], as has been already shown for tleancase in Refs. 5
and 6. Fig. 2 demonstrates the damping of the clean susceptifoibtyed ling with decreasing
elastic MFPl/a=4, 2, 1, 0.5 for fixedé/a=0.1 (which represents a typical disorder correlation
length in experimental realizationsvariations in the mea lead to a de-phasing of the oscil-
lations in the finite range case on a scad&)a~ (4) 1’4\/§/|qm(§) which is, as discussed above,
small compared to the self-averaging effect in this regime.

Figure 3 depicts the quantitative comparison between numerical and analytical results: It
shows the logarithm of x) normalized to the corresponding zero-disorder susceptibility as a
function of the inverse MFP for different correlation lengthsThe semi-classically predicted
exponential dampingEq. (4.2)] is shown as straight lines for the short rarjge<a, Eq. (3.11),
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FIG. 2. Magnetic susceptibilityx) (normalized with respect to the Landau susceptibility of a square billiard as a
function ofkga for the clean casédotted and for the ensemble average of billiards of fixed size with increasing Gaussian
disorder ¢/a=0.1) according to an elastic mean free-pdth=4, 2, 1, 0.5(solid lines in the order of decreasing
amplitudg. The susceptibility is calculated for zero magnetic field and at a temperature equal to 6 level spacings.

full line for £=0] and long rang¢é>a, Eq. (3.16), dotted lines foré/a=4, 2, 1 from the top

The semiclassical predictions accurately agree with the corresponding quantum (s3sulislg

for ¢/a=4, 2, 1, 0 and fail for intermediate valués&a= 0.5, 0.2(squares and diamondshich are

off the range of validity of the approximations. The transition from self-averaging dominated
(¢—0) suppression to damping according to fluctuations in the flb@or £&/a— ) turns out to

be non-monotonic.

In{<x>/x.)

FIG. 3. Logarithm of the ratidx)/x, as a function of the inverse elastic M@ . The symbols indicate the numerical
guantum result§from the top foré/a=4, 2, 1, 0, 0.5 and 0.2. The dotted lines show the semiclassical analytical results for
¢éla=4, 2, 1(from above according to Eq(3.16. The full line is the semiclassical result fg=0 [Eq. (3.11)]. The
guantum results fog=0.5 (squares and 0.2 (diamondg are beyond the regime of validity of the analytical limits
&la>1 andé/a<1.
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V. COMBINED IMPURITY- AND ENERGY-AVERAGE OF THE SUSCEPTIBILITY

In currently experimentally realizable structures disorder averages cannot be performed inde-
pendently from size-averages since the detailed features of the confining potential do not remain
unchanged for different impurity configurations. From the basic express®ad and (4.3) for
the susceptibility we see that changes in sizgive rise to rapid variations in the phakea (on
a quantum scajeand a much slower secular variation through the geometrical factorghus,
the effect of small size variations is equivalent to an enekgy @verage. As discussed in Sec. Il
for the clean case, variations kg lead to vanishing/(*). Therefore we have to use the typical and
energy averaged susceptibilitiesee Eqs(2.19 and(2.20 for their definition in the clean cage
When disorder is introduced we must consider eneagytdisorder averages. The typical suscep-
tibility is now defined byy®=(x?)%2. It applies to the case of repeated measurements on a given
microstructure when different impurity realizatiot@d simultaneous changeskip) are obtained
by some kind of perturbatiofe.g., cycling to room temperatyré-rom now on we will reserve the
term X(t) for the clean typical susceptlblllty,\(2)1’2 The energy and impurity averaged suscepti-
bility (x) describes the magnetic response of an ensemble of a large number of microstructures
with different impurity realizations and variations in size. This is the situation of the experiment of
Ref. 21 that we discuss in the sequel.

A. Integrable systems: The square billiard

The semiclassical results fqt" and(y) for a system of integrable geometry are obtained in
an analogous way as we proceeded(fgr in Sec. IV, that is by including in the integré?.16) for
7w a 0,-dependent disorder-induced phase &8¥,)/%) [see Eq.(4.1)]. However, now we
have to take the square &fy, (respectively#®>7,,/dH?) before the impurity average and cross
correlations between different patBsand®’ on a torusM or between different tori have to be
considered. We discuss this effect, typical of integrable systems, for the case of a square billiard.
For sake of clarity we assume moreover a temperature range such that only the contribution of the
shortest closed orbit has to be taken into account. Instead of 248 and(2.24) which hold for
the clean case, the contribution of orbits of topolddy- (1,1) for the typical susceptibility now
reads

a dxg ) )
f f % fxg). 2 (x9)Cog . Z(X0))cOg . Z(x) f (X0, Xp),  (5.1)

with x° defined as in Eq(2.22. The function
i
f(xo,x6)=<exp[ %(5S(xo)—58(x6))}> (5.2

1
- exp( — 5220( 87 (x0)) +(F(x0)) — 2(85(x0) 8S(Xp)) (5.3

accounts for the effect of disorder on pairs of orbigsandx; . [See Eq(3.20 for the treatment
in the general cageFor the magnetic response of an energy- and disorder-averaged ensemble we
find correspondingly

a ad
<X> 1f dXof Xo[%z cod ¢. Z_)+.7% cod @. 7. )1f(Xg,X{) 64

with x° defined in Eq(2.25 and. Z.. as in Eq.(2.24.
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<)?>/XL
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kra

FIG. 4. Averaged magnetic susceptibiligt H~0 of an ensemble of square billiards with variations in the size and
impurity potential €= 0) for different disorder strength, i.e., elastic mean free patiThe full curves show the numerical
guantum results and the dotted lines the semiclassical predictions fros.Bqtaking into account the variations 6f

with ke [see Eq(A4)]. The two sets of curves correspond to an elastic MR =, 8, 4, 2, 1(atkra=65), (from the

top).

1. Short range case

We begin with the discussion of the short range case: Although we reach the border of
applicability of our semiclassical approximation ¥+ 0, it shows us that in this limit orbits with
Xgo # Xg are disorder-uncorrelated and all such pair contributions are exponentially damped. Using
exclusively the family(1,1), one obtains an overall suppression of the typical and average sus-
ceptibility at finite temperature according to

lim xV=y{e 125, (5.5
§-0
lim ()= xe™tu'ls, (5.6
£—0

Note that the exponent fofy) differs by a factor 1/2 from that folx) [see Eq.(4.2 and
subsequent tekt

Figure 4 depicts th&a dependence of the ensemble averaged susceptiggjtyn the short
range cas€=0. The dotted curves showing the semiclassical analytical foriftué are com-
pared with a direct quantum mechanical calculation{ @) [using the numerically obtained
N°{ ) in Eq.(2.99] for disorder ensembles of different impurity strength equivalent to an elastic
MFPIs/a=, 8, 4, and 1 akra~ 65 (from the top. Note, that the effective MFP decreases along
the curves with decreasirig: [see Eq(A4)] and the localized regime may eventually be reached
for smallkga. At the limit of the ballistic regime at smalka the semiclassical result begins to
differ from the quantum one although the functional behavior remains the same. This arising
difference may be related to non-ballistic scattering from impurities which is not included here.

2. Finite range case

In the finite rangenp<¢<<a, the phase shiftdS(x,) and §S(x;) in f(Xg,X() are accumulated
in a correlated way, if the spatial distance of two orbigsandx;, is smaller thar¢. To evaluate
the product term 25S(x,) §S(x4) ) in the exponent of (Xq,X() in this regime the integrations are
performed as in Eq(3.9 but with g and q' running along paths starting at, respectively,
Xg- lgnoring the additional correlations occuring near the bounces off the boundaries of the
billiard, the trajectories<, and x; (see Fig. 1 can be regarded as straight lines remaining at a
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constant distance/=|xy— xoll\/f from another. We can therefore approximdie,x,) by
f(|x(J x4|/+/2) with the functionf given by Eq.(3.20. For Gaussian correlation we thus have

, L1y (Xo—Xg)?
f(Xg.,Xg) = €ex T 1—ex —Tg—

Orbits separated byixo—x4|>¢& are disorder-uncorrelated and exponentially suppressed:
f(Xg,X()= exp(—Lq/1). For those orbits the random disorder leads to an uncorrelated detuning
of the phases. In contrast to that, disorder only weakly affects trajectories separated by
|Xo—Xg| <&.

The disorder averages in the finite range regime lead, by means of the fufictiona
non-exponential damping of the susceptibilities for systems with families of periodic orbits. This
behavior becomes obvious for the case of square billiards whefle=dt the integralg5.1) and
(5.4) can be evaluated analytically in the limits bf;<<| (extreme ballistit and L,,;>1 (deep
ballistic).. We find for the typical and average susceptibilityrbt 0 in the finite range case for

| -

(1) 2

X L1y ¢

(XE:P) _1_|_(1_Ct5 ) (5.89
X) L
@:1——“(1—%5), (5.8b
X I a

and forL;>1 (by steepest descent

() 2 1/2

X g\ | )
—=| =c| =l — , 5.9
(X(ctl)) ta) L1y (593

— 1/2
=g

The constants in the above equations @re (20/7)\27 andc,=22. Egs.(5.8) express the

limit of very weak disorder, showing that the small disorder effect is further reduced due to the
correlation of the disorder potential. The other limit, E€5.9), is noticeably more interesting
since it shows that disorder correlation effects lead to a replacement of the exponential disorder
damping by a power law.

Figure 5 depicts in logarithmic representation our collected results for the disorder averaged
typical (a) and averagedb) susceptibility for square billiardéat H=0 andkgT=2g,A) as a
function of the inverse elastic MFP for different disorder correlation lengths. The symbols denote
results from numerical quantum simulations described in the previous section and the full curves
semiclassical results from numerical integration of the Efsl) and (5.4). For the short range
case¢é=0 they reduce to E(5.6) predicting an exponential decrease with exporngnrt! which
is in line with the quantum calculatiorisircles. The semiclassical results for the finite range are
on the whole in agreement with the numerical results &= 0.1 (diamond$, &/a=0.2 (tri-
angles and¢/a= 0.5 (squares The semiclassical curves seem to overestimate the damping of the
typical susceptibility. The dotted curvéshown fora/l =1) depict the analytical expressiofs9)
in the regime.,,>1. Since for finite the transport MFP;>1 [see Eq(A6)], this regime can still
be considered agleep ballistic and our semiclassical assumptions being based on straight-line
trajectories remain valid.
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FIG. 5. Logarithm of the ratio between disorder averaged and clean results) fypical ¥ (b) ensemble averaged

(x) susceptibilities as a function of increasing inverse elastic MfRor different values of/a. The symbols denote the
numerical quantum results, the solid lingsr £>0) the semiclassical integralS.1) (a) and(5.4) (b) and the dashed lines
asymptotic expansion®.9) of the integrals for large/|.

As the semiclassical formulae already indicate, the overall disorder behavigy ahdx® is
quite similar.

3. Long range case

For completeness, we will consider the effect of the disorder for the long range regime: We
can use the Eq€5.1) and(5.4) but cannot calculate the disorder functibfxy,xg) in the same
way as for the finite range. We can however, similar as(fgrin Sec. IV, expand the exponent
—((8S(xg) — 8S(x4))?) of f(Xg,Xp) in Eq. (5.2 for smalla/é. In the case of the square all orders
up to (a/£)® vanish and we find aery small overall reduction of the clean averaged susceptibili-
ties [from family (11)] given by

() 2 9
X .afa
~—] =1-6.510 5—(—) . (5.10
(XE?) I\ €

For square billiards this leading order contribution no longer depends,oifhe energy- and
disorder-averagéy) exhibits the same damping ag()2. Note that besides the high order in
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2
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FIG. 6. Typical susceptibility as predicted by E&.1) as a function of the dimensionless flgx=Ha? ®,. Dash line:
clean case; solid lind:=a and£=0.1.

(a/¢) the prefactor is rather small. This weak suppression of the averaged susceptibilities can be
related to the fact that in the long range case, different sectors of the contributing periodic orbits
are highly correlated. As seen in Figah the quantum mechanical resulsquaresfor Y at
&/a=0.5, which are closest to the long range case, exhibit already a very weak damping.

B. Disorder effects at finite  H-field: From integrable to chaotic behavior

In Fig. 6 we compare the ratig/x%)? [obtained from calculating the integral in E&.1)]
as a function of the dimensionless flyx=Ha?/ @, for the clean case and for disorder character-
ized byl=a and£=0.1. This figure shows that the damping due to disorder is maximal at zero
field, but that already fop=5 the disorder seems not to affect the magnetic response any further.
The origin of this behavior can be understood readily by observing that as saois darger
than one, the integral E@5.1) is correctly approximated by a stationary phase approximation.
The stationary poinkg=a/2 corresponds to the two periodic orbits of fherturbedsystem, and
only the trajectories such that

(Xo—X3)2e<1 (5.11)

actually contribute to the integral. The magnetic field causes a de-phasing of the contributions of
the various trajectories of the family, thus breaking the integrability of the system. This effect is
responsible for the overall decrease of the typical susceptibility as the field increases. In this
respect clean and disordered square billiards are not equivalent. In the disordered case, trajectories
separated by a distance larger thaare already not contributing in phase. Therefore the addi-
tional magnetic field affects the magnitude of the susceptibility much less. This remains true up to
the point where the conditiofb.11) implies|xq—x3| < £ in which case the disorder is not effective
anymore, and the two curves coincide.

Therefore the behavior of the disorder damping we discussed in the previous subsection is
characteristic for integrable geometries. For chaotic systems diagonal contribp@ingroducts
of the same periodic orhitare barely affected by disorder. This behavior is similar to that of
integrable systems at finite field. When evaluating the contribution to the trace of the Green
function in the neighborhood of a periodic orbit by stationary phase approximassrfor the
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derivation of the Gutzwiller trace formulanly orbits extremely close to the periodic orbit under
consideration actually contribute. Unle&ss exceedingly small, all these trajectories will see the
same disorder potential.

As a final remark, note thaton-diagonalcontributions(pairs of different pathsare fully
damped upon impurity average for chaotic as well as integrable systems, since the disorder
potential along two different trajectories is usually not correldssk also the discussion of the
averaged Green function product after E8.17)]. Therefore non-diagonal contributions, which
may be necessary to consider in the clean ¢3see exponentially suppressed in the presence of
disorder. On the contrargliagonalterms which contain orbit correlations on distan§e®xhibit
non-exponential behavigEg. (5.7)] as a function of the inverse MFPI Ifor integrable geom-
etries and are not affectddithin our approximationsby disorder in the chaotic case.

C. Relation to experiment and other theories

Measurements of the orbital magnetism of small microstructures are still rare today. The only
experiment on ensembles of ballistic billiards that we are aware of, was performedyppi al 2*
and investigated the magnetic susceptibility of an array of abcuballistic square-like cavities.

The size of the squares is on average4.5um, with a large dispersiofestimated between 10%

and 30% along the array. Each individual square is a mesoscopic ballistic system since the
phase-coherence length is estimated to Lbg=15-40 um and the elastic mean-free-path
|=4.5-10 um. The potential correlation length can be estim#te be of the order of
¢éla=0.1. Taking the most unfavourable caselefa=4.5 um we obtain, with respect to the
clean case, a disorder reduction for the averaged susceptibility)of=0.37, showing that the
features of the clean integrable systefstsong paramagnetic susceptibilitytdt=0) persist upon
inclusion of disorder. Sincg=100y,,> " our calculations for the paramagnetic response of the
ballistic squares agree quantitatively with the experimental findigyen the experimental un-
certainties.

Persistent currents in individual quasi-ballistic rings have recently been medSurasimilar
setup would be needed for measuring the magnetic response of singly connected geometries,
where our typical susceptibility5.1) should be measured for the integrable case. Since modern
lithographic techniques allow one to design chaotic as well as integrable cavitied since we
have demonstrated that disorder does not mask this difference, an order-of-magnitude effect is
expected in the susceptibility according to the sha@motic vs. integrab)eof the cavity.

In a related theoretical work Gefeet al®? followed a complementary approach to ours and
calculated the disorder-averaged susceptibility for an ensemble of ballistic squares based on long
trajectories(strongly affected by scattering fromd-like impurities. They found that the average
susceptibility does not depend on the elastic MFP. These results are not borne out by either our
analytical or our semiclassical calculations at temperatures relevant for the experiment, where the
exponential damping from E¢2.18 makes very long trajectories irrelevant.

VI. SUMMARY

In this work we have studied the interplay between integrability and disorder in the ballistic
regime. The integrable property of the confining potential of a microstructure implies a peculiar
behavior of its thermodynamical response functions, like the magnetic susceptibility. The disorder
effects provided by remote impurity scattering tend to weaken the importance of the boundary
scattering(and therefore the relevance of the underlying classical mechahisig a semiclas-
sical approach we quantify this damping and show it to be much weaker than previously estimated
(power-law suppression instead of exponential damping for the typical and average susceptibility
The disorder damping is decisively affected by finite-size effects since it depends not only on
bulk-like characteristics of the disordélike the elastic mean-free-pathbut also on the ratio
between the size of the structure and the correlation length of the potential.
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TABLE I. Summary of the different average susceptibilitiesH =0) considered in the short rangé<\<a), finite

range fd<¢<a) and long rangeXg<a<¢) regimes. The fixed-size impurity averaged susceptibflity is given by the
one-particle Green function, while the typical? and averagex) susceptibilities are given by two-particle Green
functions and involve impurity and energy averages. The different average susceptibilities are normalized with respect to
the corresponding clean counterpalts, is the length of the shortest flux-enclosing periodic trajectories in the square. In
the short range regime the damping is governed by the elastic mean-fregspagitren by the quantum mechanical
expressior(A4). The damping in the finite and long range regimes is governed by the elastid M#®se semiclassical
expression is given in Eq3.14)], the correlation lengtl§ of the impurity potential and the sizeof the structurel, is the

moment of inertia of thé11) trajectorie{Eq. (3.16]. The finite-range expressions fef? and(x) showing a power-law
damping hold in the deep ballistic limit<L,,. The numerical factors are,=(20/7)J2,c,=2\27,d;=1/4/, and

d,=6.510"5.
Short range Finite range Long range
O xe exp(-L1/2l5) exp(-L./21) exp{—dy(LN9[1-1,/(28)T}
xO1xH? exp(-Li/l5) c(&ay (/L) ™? 1-deall(a/¢)°
Ox exp(=Li/l5) ca(&a)(l/L)™? 1-deall(a/§)°

Our finding for the weak disorder damping is particularly important due to the large phase
coherence effects found for clean integrable structures and to the fact that the difference in the
magnetic response between integrable and chaotic geometries has not yet been experimentally
demonstrated.

Our calculational tools have been semiclassical expansions, which naturally convey at the
quantum level information about the underlying classical mechanics and its sensitivity with re-
spect to disorder. For the weak disorder that we have considered in this work, the lowest order
approximation consists of the perturbative modification of the classical actions by the impurity
potential. Averages over impurity configurations following our semiclassical calculations, allow us
to obtain various ensemble susceptibilities. Our analytical calculations have been checked against
numerical quantum simulations performing exact diagonalizations of the corresponding Hamil-
tonian.

The need to consider different averages is inherent to ballistic nanostructures, which are
sufficiently small to be non-self-averaging. These various types of impurity-averaged susceptibili-
ties for integrable systems are summarized in Table | for the three regimes defined by the corre-
lation length of the impurity potential. We have first studied the fixed-size averaged susceptibility,
directly obtainable from the disorder average of one-particle Green functions. It corresponds to the
case where different impurity configurations of a given sample with a fixed Fermi energy are
considered. For the short range regime, where the disorder correlation fength, we have an
exponential suppression of the clean results governed by the short-range elastic mean-free-path
s and the length of the most relevant trajectories. This result also holds in the finite-range
(ANg<é<a), but with an elastic mean-free-path that we have evaluated semi-classically. In the
long-range regime §>a) the fixed-size averaged susceptibility depends exponentially on the
product L/1)-(L/&) (whereL denotes the typical orbit lengttand a correction taking into
account the geometry of the periodic trajectories.

For comparison with actual experiments we have to take into account that different impurity
realizations are obtained together with a change in the Fermi energy and the size of the structures.
We are then led to consider impurity and size averaged susceptibilities, which are expressed in
terms of two-particle Green functions. The typical susceptibility is appropriate when considering
the magnetic response of an individual sample which is thermally cycled in order to obtain
different realizations of the potential. The average susceptibility is obtained from the measurement
of an array of microscopically different samples. For the short-range case the only difference
between one- and two-point Green function quantities is the factor 1/2 of the exponential damping
of the former. In the finite-range regime there appear important differences when considering
two-point Green function quantities with respect to the one-particle case. Closed trajectories that

J. Math. Phys., Vol. 37, No. 10, October 1996

Downloaded-10-Jul-=2007-t0-132.199.145.54.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://jmp.aip.org/jmp/copyright.jsp



5108 Richter, Ullmo, and Jalabert: Integrability and disorder in mesoscopic systems

remain closer than the correlation length of the potential result in a weak damping with a power-
law dependence oh/L and &/a. This is the experimentally relevant situation, and the use of
standard parameters led us to conclude that disorder damping in currently realizable microstruc-
tures is sufficiently weak in order not to mask the large effects due to integrability. In the long-
range case the damping due to disorder is extremely small.

We have further considered the interplay between disorder and magnetic field in integrable
geometries. It is interesting to note that both have a similar effect since they produce de-phasing
between nearby trajectories. Since the two sources of de-phasing do not superpose, we find that
disorder is less effective at finite fields, and reciprocally, disordered samples are less sensitive to
magnetic field.

In chaotic geometries periodic trajectories are usually isolated, resulting in smaller oscillations
of the density of states and a much smaller magnetic response than integrable systems. Introduc-
tion of disorder in chaotic geometries is therefore less dramatic than in integrable systems, since
it merely changes the action of the relevant periodic trajectories instead of producing de-phasing
within a family. The transition from the ballistic regintehere classical trajectories are essentially
unaffected by disordgrto the diffusive regime will be considered in a subsequent publication.

In this work we have started from a system that is physically realizable using modern tech-
nology and we have developed a theoretical model with some key ingredients involving integra-
bility and disorder. These are deep theoretical issues that need to be complemented by the con-
sideration of other effects, like interactions, in order to obtain a complete description of the
thermodynamics of mesoscopic systems.
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APPENDIX: RELATION BETWEEN SEMICLASSICAL AND QUANTUM MECHANICAL
RESULTS FOR BULK MEAN FREE PATHS

It is instructive to compare the semiclassical results of E§<2—(3.14) for the ballistic
regime with their counterparts obtained from quantum mechanical scattering theory.

In a perturbative diagrammatic approagheating the related Dyson-equation for scattering
within a self-consistent Born approximatjothe damping of the disorder-averaged one-particle
Green function in a random potential is of the same exponential form as if3Bd).° This is
usually obtained by replacing the imaginary part of the self-energy in the Green function after
impurity average by the product of the density of states of the unperturbed systemugnd he
resulting quantum mechanical inverse elastic MER, which appears in E¢3.11), is related to
the total cross sectionr by means of

1
|_ = ni g, (Al)
am
wheren; is the impurity density and
o= f dOo(0) (A2)

with ¢(0®) being the partial cross section for scattering with an afyle
For a Gaussian disorder potential of the form of E33) a calculation of the cross section can
be performed analytically and the corresponding inverse MFP gives
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lqm:qéldz(kgﬁ]e-”k@? (A3)

Here,l is a modified Bessel function and

el om A4
|5_ A Ve (/*L)_ UE ﬁ3 ( )
is the inverse MFP for the white noise caseddike scatterers of mean strength Thev is the
Fermi velocity andd(u)=m/(27%?) the density of states at the Fermi energy of a 20EG.
In order to comparé,, with our semiclassical result we expahg(k¢) for largeké which
gives

| qm(ké)=am(ké)! 5 for ké—co. (A5)

1
1= Teke?

The leading order term is exactly the semiclassical MFP Bdl4) for the Gaussian disorder
model(3.3). The agreement between the semiclassical and diagrammatic approaches for the bulk
can be related to the fact that our semiclassical treatment of disorder corresponds to the use of the
Eikonal approximatior{for each single scattering evénthich is known to give the same results

as Born approximation for large.

In the limit of &<\ where our semiclassical description is no longer applicable, the mean
free pathl,, approached;, which means that Eq(3.11) can further be used, but with the
semiclassical replaced byl 5.

The quantum mechanical transport mean free patlis calculated by including a factor
(1— cosO) in the integral(A2) for the scattering amplitude. It reads for Gaussian disorder

1 1 2
Ezg(lo[z(kf)z]—|1[2(k§)2])672(k§) (AB)
_ 1 1

o AKD? for ké—oo. (A7)

This relation shows thdt can be considerably larger thég, for A\g<£. This shows that in the
case of a confined system and smooth disorder, the system may behave ballistically although the
elastic MFPI state might be considerably smaller than the system size.
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