677 research outputs found
Statistical Inference in a Directed Network Model with Covariates
Networks are often characterized by node heterogeneity for which nodes
exhibit different degrees of interaction and link homophily for which nodes
sharing common features tend to associate with each other. In this paper, we
propose a new directed network model to capture the former via node-specific
parametrization and the latter by incorporating covariates. In particular, this
model quantifies the extent of heterogeneity in terms of outgoingness and
incomingness of each node by different parameters, thus allowing the number of
heterogeneity parameters to be twice the number of nodes. We study the maximum
likelihood estimation of the model and establish the uniform consistency and
asymptotic normality of the resulting estimators. Numerical studies demonstrate
our theoretical findings and a data analysis confirms the usefulness of our
model.Comment: 29 pages. minor revisio
Tests of cosmic ray radiography for power industry applications
In this report, we assess muon multiple scattering tomography as a
non-destructive inspection technique in several typical areas of interest to
the nuclear power industry, including monitoring concrete degradation, gate
valve conditions, and pipe wall thickness. This work is motivated by the need
for radiographic methods that do not require the licensing, training, and
safety controls of x-rays, and by the need to be able to penetrate considerable
overburden to examine internal details of components that are otherwise
inaccessible, with minimum impact on industrial operations. In some scenarios,
we find that muon tomography may be an attractive alternative to more typical
measurements.Comment: LA-UR-15-2212
Formation of ultracold RbCs molecules by photoassociation
The formation of ultracold metastable RbCs molecules is observed in a double
species magneto-optical trap through photoassociation below the
^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous
emission. The molecules are detected by resonance enhanced two-photon
ionization. Using accurate quantum chemistry calculations of the potential
energy curves and transition dipole moment, we interpret the observed
photoassociation process as occurring at short internuclear distance, in
contrast with most previous cold atom photoassociation studies. The vibrational
levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^-
electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation
limit. The computed vibrational distribution of the produced molecules shows
that they are stabilized in deeply bound vibrational states of the lowest
triplet state. We also predict that a noticeable fraction of molecules is
produced in the lowest level of the electronic ground state
The ultraluminous GRB 110918A
GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19
years of continuous observations and the most luminous GRB ever observed since
the beginning of the cosmological era in 1997. We report on the final IPN
localization of this event and its detailed multiwavelength study with a number
of space-based instruments. The prompt emission is characterized by a typical
duration, a moderare of the time-integrated spectrum, and strong
hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a
huge isotropic-equivalent energy release
erg. The record-breaking energy flux observed at the peak of the short, bright,
hard initial pulse results in an unprecedented isotropic-equivalent luminosity
erg s. A tail of the soft gamma-ray
emission was detected with temporal and spectral behavior typical of that
predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT
observed the bright afterglow from 1.2 to 48 days after the burst and revealed
no evidence of a jet break. The post-break scenario for the afterglow is
preferred from our analysis, with a hard underlying electron spectrum and
ISM-like circumburst environment implied. We conclude that, among multiple
reasons investigated, the tight collimation of the jet must have been a key
ingredient to produce this unusually bright burst. The inferred jet opening
angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected
radiated energy and the peak luminosity, which, however, are still at the top
of their distributions for such tightly collimated events. We estimate a
detection horizon for a similar ultraluminous GRB of for Konus-WIND,
and for Swift/BAT, which stresses the importance of GRBs as probes of
the early Universe.Comment: 22 pages, 20 figures, accepted for publication in Ap
Integrating the Fermi Gamma-Ray Burst Monitor into the 3rd Interplanetary Network
We are integrating the Fermi Gamma-Ray Burst Monitor (GBM) into the
Interplanetary Network (IPN) of Gamma-Ray Burst (GRB) detectors. With the GBM,
the IPN will comprise 9 experiments. This will 1) assist the Fermi team in
understanding and reducing their systematic localization uncertainties, 2)
reduce the sizes of the GBM and Large Area Telescope (LAT) error circles by 1
to 4 orders of magnitude, 3) facilitate the identification of GRB sources with
objects found by ground- and space-based observatories at other wavelengths,
from the radio to very high energy gamma-rays, 4) reduce the uncertainties in
associating some LAT detections of high energy photons with GBM bursts, and 5)
facilitate searches for non-electromagnetic GRB counterparts, particularly
neutrinos and gravitational radiation. We present examples and demonstrate the
synergy between Fermi and the IPN. This is a Fermi Cycle 2 Guest Investigator
project.Comment: 5 pages, 11 figures. 2009 Fermi Symposium. eConf Proceedings C09112
The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts
We present Interplanetary Network (IPN) data for the gamma-ray bursts in the
first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that
catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least
one other instrument in the 9-spacecraft IPN. Of the 427, the localizations of
149 could be improved by arrival time analysis (or triangulation). For any
given burst observed by the GBM and one other distant spacecraft, triangulation
gives an annulus of possible arrival directions whose half-width varies between
about 0.4' and 32 degrees, depending on the intensity, time history, and
arrival direction of the burst, as well as the distance between the spacecraft.
We find that the IPN localizations intersect the 1 sigma GBM error circles in
only 52% of the cases, if no systematic uncertainty is assumed for the latter.
If a 6 degree systematic uncertainty is assumed and added in quadrature, the
two localization samples agree about 87% of the time, as would be expected. If
we then multiply the resulting error radii by a factor of 3, the two samples
agree in slightly over 98% of the cases, providing a good estimate of the GBM 3
sigma error radius. The IPN 3 sigma error boxes have areas between about 1
square arcminute and 110 square degrees, and are, on the average, a factor of
180 smaller than the corresponding GBM localizations. We identify two bursts in
the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM
triggered on a terrestrial gamma flash, and in the other, its origin was given
as uncertain. We also discuss the sensitivity and calibration of the IPN.Comment: 52 pages, 12 figures, 4 tables. Revised version, resubmitted to the
Astrophysical Journal Supplement Series following refereeing. Figures of the
localizations in Table 3 may be found on the IPN website, at
ssl.berkeley.edu/ipn3/YYMMDD, where YY, MM, and DD are the year, month, and
day of the burst, sometimes with suffixes A or
A report on the nonlinear squeezed states and their non-classical properties of a generalized isotonic oscillator
We construct nonlinear squeezed states of a generalized isotonic oscillator
potential. We demonstrate the non-existence of dual counterpart of nonlinear
squeezed states in this system. We investigate statistical properties exhibited
by the squeezed states, in particular Mandel's parameter, second-order
correlation function, photon number distributions and parameter in
detail. We also examine the quadrature and amplitude-squared squeezing effects.
Finally, we derive expression for the -parameterized quasi-probability
distribution function of these states. All these information about the system
are new to the literature.Comment: Accepted for publication in J. Phys. A: Math. Theo
- …