385 research outputs found

    Madam Pele: Novel and essay

    Get PDF
    Novel. My novel deals with the themes of obsession, jealousy, volatility, and revenge, while simultaneously dealing with the more benign theme of love within relationships, and holiday-mode pleasures. Divided into different narrative voices, it traces the interweaving stories of Madam Pele, Goddess of volcanoes and lava, a small lava rock, and Di and Paul, both during their past holiday in Hawaii, and in the present in Perth. Inadvertantly transporting Pele within the rock on their return from Hawaii, they unwittingly release her rage upon their city. Essay. In this essay I cover contemporary theoretical considerations, such as Modernism, Postmodernism and Fantasy, and an analysis of various influential authors\u27 writing techniques, descriptive language and narrative-plot genres, that led me to want to write my novel Madam Pele as a contemporary mythical fantasy. I then detail the devices, (such as voices, patterns, free verse, active verbs and so on) that I used to achieve this result - the implausable becoming reality with the Pele myth incorporated into the contemporary world

    Radiative transfer modelling of parsec-scale dusty warped discs

    Full text link
    Warped discs have been found on (sub-)parsec scale in some nearby Seyfert nuclei, identified by their maser emission. Using dust radiative transfer simulations we explore their observational signatures in the infrared in order to find out whether they can partly replace the molecular torus. Strong variations of the brightness distributions are found, depending on the orientation of the warp with respect to the line of sight. Whereas images at short wavelengths typically show a disc-like and a point source component, the warp itself only becomes visible at far-infrared wavelengths. A similar variety is visible in the shapes of the spectral energy distributions. Especially for close to edge-on views, the models show silicate feature strengths ranging from deep absorption to strong emission for variations of the lines of sight towards the warp. To test the applicability of our model, we use the case of the Circinus galaxy, where infrared interferometry has revealed a highly elongated emission component matching a warped maser disc in orientation and size. Our model is for the first time able to present a physical explanation for the observed dust morphology as coming from the AGN heated dust. As opposed to available torus models, a warped disc morphology produces a variety of silicate feature shapes for grazing lines of sight, close to an edge-on view. This could be an attractive alternative to a claimed change of the dust composition for the case of the nearby Seyfert 2 galaxy NGC 1068, which harbours a warped maser disc as well.Comment: accepted by MNRA

    Full-field structured-illumination super-resolution X-ray transmission microscopy

    No full text
    Modern transmission X-ray microscopy techniques provide very high resolution at low and medium X-ray energies, but suffer from a limited field-of-view. If sub-micrometre resolution is desired, their field-of-view is typically limited to less than one millimetre. Although the field-of-view increases through combining multiple images from adjacent regions of the specimen, so does the required data acquisition time. Here, we present a method for fast full-field super-resolution transmission microscopy by structured illumination of the specimen. This technique is well-suited even for hard X-ray energies above 30 keV, where efficient optics are hard to obtain. Accordingly, investigation of optically thick specimen becomes possible with our method combining a wide field-of-view spanning multiple millimetres, or even centimetres, with sub-micron resolution and hard X-ray energies

    UK Housing Market: Time Series Processes with Independent and Identically Distributed Residuals

    Get PDF
    The paper examines whether a univariate data generating process can be identified which explains the data by having residuals that are independent and identically distributed, as verified by the BDS test. The stationary first differenced natural log quarterly house price index is regressed, initially with a constant variance and then with a conditional variance. The only regression function that produces independent and identically distributed standardised residuals is a mean process based on a pure random walk format with Exponential GARCH in mean for the conditional variance. There is an indication of an asymmetric volatility feedback effect but higher frequency data is required to confirm this. There could be scope for forecasting the index but this is tempered by the reduction in the power of the BDS test if there is a non-linear conditional variance process

    United States Military Fatalities During Operation Inherent Resolve and Operation Freedom\u27s Sentinel.

    Get PDF
    BACKGROUND: Military operations provide a unified action and strategic approach to achieve national goals and objectives. Mortality reviews from military operations can guide injury prevention and casualty care efforts. METHODS: A retrospective study was conducted on all U.S. military fatalities from Operation Inherent Resolve (OIR) in Iraq (2014-2021) and Operation Freedom\u27s Sentinel (OFS) in Afghanistan (2015-2021). Data were obtained from autopsy reports and other existing records. Fatalities were evaluated for population characteristics; manner, cause, and location of death; and underlying atherosclerosis. Non-suicide trauma fatalities were also evaluated for injury severity, mechanism of death, injury survivability, death preventability, and opportunities for improvement. RESULTS: Of 213 U.S. military fatalities (median age, 29 years; male, 93.0%; prehospital, 89.2%), 49.8% were from OIR, and 50.2% were from OFS. More OIR fatalities were Reserve and National Guard forces (OIR 22.6%; OFS 5.6%), conventional forces (OIR 82.1%; OFS 65.4%), and support personnel (OIR 61.3%; OFS 33.6%). More OIR fatalities also resulted from disease and non-battle injury (OIR 83.0%; OFS 28.0%). The leading cause of death was injury (OIR 81.1%; OFS 98.1%). Manner of death differed as more homicides (OIR 18.9%; OFS 72.9%) were seen in OFS, and more deaths from natural causes (OIR 18.9%; OFS 1.9%) and suicides (OIR 29.2%; OFS 6.5%) were seen in OIR. The prevalence of underlying atherosclerosis was 14.2% in OIR and 18.7% in OFS. Of 146 non-suicide trauma fatalities, most multiple/blunt force injury deaths (62.2%) occurred in OIR, and most blast injury deaths (77.8%) and gunshot wound deaths (76.6%) occurred in OFS. The leading mechanism of death was catastrophic tissue destruction (80.8%). Most fatalities had non-survivable injuries (80.8%) and non-preventable deaths (97.3%). CONCLUSIONS: Comprehensive mortality reviews should routinely be conducted for all military operation deaths. Understanding death from both injury and disease can guide preemptive and responsive efforts to reduce death among military forces

    Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    Get PDF
    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O(fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 &permil; (&permil; = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 &permil; are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 &permil;) is 4 times lower than the average for IEPOX-SOA (22 ± 7 &permil;), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 &permil; on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 &permil;) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 &permil;) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GI≪GbG_I \ll G_b

    Circulating Micro-RNAs as Potential Blood-Based Markers for Early Stage Breast Cancer Detection

    Get PDF
    INTRODUCTION: MicroRNAs (miRNAs, miRs) are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls. METHODS: We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR) validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718). RESULTS: Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202. CONCLUSIONS: MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to establish these new biomarkers in clinical use

    A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary

    Get PDF
    Environmental conditions, dispersal lags, and interactions among species are major factors structuring communities through time and across space. Ecologists have emphasized the importance of biotic interactions in determining local patterns of species association. In contrast, abiotic limits, dispersal limitation, and historical factors have commonly been invoked to explain community structure patterns at larger spatiotemporal scales, such as the appearance of late Pleistocene no-analog communities or latitudinal gradients of species richness in both modern and fossil assemblages. Quantifying the relative influence of these processes on species co-occurrence patterns is not straightforward. We provide a framework for assessing causes of species associations by combining a null-model analysis of co-occurrence with additional analyses of climatic differences and spatial pattern for pairs of pollen taxa that are significantly associated across geographic space. We tested this framework with data on associations among 106 fossil pollen taxa and paleoclimate simulations from eastern North America across the late Quaternary. The number and proportion of significantly associated taxon pairs increased over time, but only 449 of 56 194 taxon pairs were significantly different from random. Within this significant subset of pollen taxa, biotic interactions were rarely the exclusive cause of associations. Instead, climatic or spatial differences among sites were most frequently associated with significant patterns of taxon association. Most taxon pairs that exhibited co-occurrence patterns indicative of biotic interactions at one time did not exhibit significant associations at other times. Evidence for environmental filtering and dispersal limitation was weakest for aggregated pairs between 16 and 11 kyr BP, suggesting enhanced importance of positive species interactions during this interval. The framework can thus be used to identify species associations that may reflect biotic interactions because these associations are not tied to environmental or spatial differences. Furthermore, temporally repeated analyses of spatial associations can reveal whether such associations persist through time

    Nanoparticle colloidal stability in cell culture media and impact on cellular interactions

    Get PDF
    Nanomaterials are finding increasing use for biomedical applications such as imaging, diagnostics, and drug delivery. While it is well understood that nanoparticle (NP) physico-chemical properties can dictate biological responses and interactions, it has been difficult to outline a unifying framework to directly link NP properties to expected in vitro and in vivo outcomes. When introduced to complex biological media containing electrolytes, proteins, lipids, etc., nanoparticles (NPs) are subjected to a range of forces which determine their behavior in this environment. One aspect of NP behavior in biological systems that is often understated or overlooked is aggregation. NP aggregation will significantly alter in vitro behavior (dosimetry, NP uptake, cytotoxicity), as well as in vivo fate (pharmacokinetics, toxicity, biodistribution). Thus, understanding the factors driving NP colloidal stability and aggregation is paramount. Furthermore, studying biological interactions with NPs at the nanoscale level requires an interdisciplinary effort with a robust understanding of multiple characterization techniques. This review examines the factors that determine NP colloidal stability, the various efforts to stabilize NP in biological media, the methods to characterize NP colloidal stability in situ, and provides a discussion regarding NP interactions with cell
    • …
    corecore