169 research outputs found

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD

    Negative cancer beliefs, recognition of cancer symptoms and anticipated times to help-seeking: an international cancer benchmarking partnership (ICBP) study

    Get PDF
    Background: Understanding what influences people to seek help can inform interventions to promote earlier diagnosis of cancer, and ultimately better cancer survival. We aimed to examine relationships between negative cancer beliefs, recognition of cancer symptoms and how long people think they would take to go to the doctor with possible cancer symptoms (anticipated patient intervals). Methods: Telephone interviews of 20,814 individuals (50+) in the United Kingdom, Australia, Canada, Denmark, Norway and Sweden were carried out using the Awareness and Beliefs about Cancer Measure (ABC). ABC included items on cancer beliefs, recognition of cancer symptoms and anticipated time to help-seeking for cough and rectal bleeding. The anticipated time to help-seeking was dichotomised as over one month for persistent cough and over one week for rectal bleeding. Results: Not recognising persistent cough/hoarseness and unexplained bleeding as cancer symptoms increased the likelihood of a longer anticipated patient interval for persistent cough (OR=1.66; 95%CI=1.47-1.87) and rectal bleeding (OR=1.90; 95%CI=1.58-2.30), respectively. Endorsing four or more out of six negative beliefs about cancer increased the likelihood of longer anticipated patient intervals for persistent cough and rectal bleeding (OR=2.18; 95%CI=1.71-2.78 and OR=1.97; 95%CI=1.51-2.57). Many negative beliefs about cancer moderated the relationship between not recognising unexplained bleeding as a cancer symptom and longer anticipated patient interval for rectal bleeding (p=0.005). CONCLUSIONS: Intervention studies should address both negative beliefs about cancer and knowledge of symptoms to optimise the effect

    Interplay in the Selection of Fluoroquinolone Resistance and Bacterial Fitness

    Get PDF
    Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug

    Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland

    Get PDF
    The seasonal response to surface melting of the Northeast Greenland Ice Stream outlets, Zachariae and 79N, is investigated using new highly temporally resolved surface velocity maps for 2016 combined with numerical modeling. The seasonal speedup at 79N of 0.15 km/yr is suggested to be driven by a decrease in effective basal pressure induced by surface melting, whereas for Zachariae its 0.11 km/yr seasonal speedup correlates equally well with the breakup of its large ice mélange. We investigate the influence 76 km long floating tongue at 79N, finding it provides little resistance and that most of it could be lost without impacting the dynamics of the area. Furthermore, we show that reducing the slipperiness along the tongue-wall interfaces produces a velocity change spatially inconsistent with the observed seasonal speedup. Finally, we find that subglacial sticky spots such as bedrock bumps play a negligible role in the large-scale response to a seasonally enhanced basal slipperiness of the region

    Is Cancer survival associated with cancer symptom awareness and barriers to seeking medical help in England? An ecological study

    Get PDF
    Abstract BACKGROUND: Campaigns aimed at raising cancer awareness and encouraging early presentation have been implemented in England. However, little is known about whether people with low cancer awareness and increased barriers to seeking medical help have worse cancer survival, and whether there is a geographical variation in cancer awareness and barriers in England. METHODS: From population-based surveys (n=35?308), using the Cancer Research UK Cancer Awareness Measure, we calculated the age- and sex-standardised symptom awareness and barriers scores for 52 primary care trusts (PCTs). These measures were evaluated in relation to the sex-, age-, and type of cancer-standardised cancer survival index of the corresponding PCT, from the National Cancer Registry, using linear regression. Breast, lung, and bowel cancer survival were analysed separately. RESULTS: Cancer symptom awareness and barriers scores varied greatly between geographical regions in England, with the worst scores observed in socioeconomically deprived parts of East London. Low cancer awareness score was associated with poor cancer survival at PCT level (estimated slope=1.56, 95% CI: 0.56; 2.57). The barriers score was not associated with overall cancer survival, but it was associated with breast cancer survival (estimated slope=-0.66, 95% CI: -1.20; -0.11). Specific barriers, such as embarrassment and difficulties in arranging transport to the doctor's surgery, were associated with worse breast cancer survival. CONCLUSIONS: Cancer symptom awareness and cancer survival are associated. Campaigns should focus on improving awareness about cancer symptoms, especially in socioeconomically deprived areas. Efforts should be made to alleviate barriers to seeking medical help in women with symptoms of breast cancer.British Journal of Cancer advance online publication 18 August 2016; doi:10.1038/bjc.2016.246 www.bjcancer.com

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD
    • …
    corecore