
Geophysical Research Letters

Highly temporally resolved response to seasonal surface melt
of the Zachariae and 79N outlet glaciers
in northeast Greenland

N. M. Rathmann1 , C. S. Hvidberg1, A. M. Solgaard2, A. Grinsted1, G. H. Gudmundsson3 ,

P. L. Langen4 , K. P. Nielsen4, and A. Kusk5

1Center for Ice and Climate, Niels Bohr Institute, University of Copenhangen, Copenhagen, Denmark, 2Geological Survey
of Denmark and Greenland, Copenhagen, Denmark, 3British Antarctic Survey, Cambridge, United Kingdom, 4Danish
Meteorological Institute, Copenhagen, Denmark, 5National Space Institute, Technical University of Denmark (DTU),
Lyngby, Denmark

Abstract The seasonal response to surface melting of the Northeast Greenland Ice Stream outlets,
Zachariae and 79N, is investigated using new highly temporally resolved surface velocity maps for 2016
combined with numerical modeling. The seasonal speedup at 79N of 0.15 km/yr is suggested to be driven
by a decrease in effective basal pressure induced by surface melting, whereas for Zachariae its 0.11 km/yr
seasonal speedup correlates equally well with the breakup of its large ice mélange. We investigate the
influence 76 km long floating tongue at 79N, finding it provides little resistance and that most of it could
be lost without impacting the dynamics of the area. Furthermore, we show that reducing the slipperiness
along the tongue-wall interfaces produces a velocity change spatially inconsistent with the observed
seasonal speedup. Finally, we find that subglacial sticky spots such as bedrock bumps play a negligible role
in the large-scale response to a seasonally enhanced basal slipperiness of the region.

Plain Language Summary The Northeast Greenland Ice Stream may potentially contribute
significantly to near-term sea level rise and is one of the lesser studied Greenlandic systems, partly due to its
remoteness. We present a new high temporally resolved velocity data set derived from Sentinel 1-A which
allows capturing changes on a seasonal timescale, a feature which only the newest generation satellites
now permit. We show how surface melting may be linked to the observed seasonal velocity changes, giving
important insights into the possible future (range of) behavior and sensitivity of the ice stream outlets
to atmospheric changes. In addition, we present a detailed study of possible moderating factors on the
seasonal velocity response. In particular, we find that (i) the large ice mélange in front of the Zachariae
outlet might be dampening the outlet’s response, (ii) small-scale subglacial topographical bumps
(sticky spots) exert very limited control on the flow, and (iii) the 76 km long floating tongue of the 79N
outlet is largely a passive feature, suggesting that most of it (∼80%) could be lost without effecting the
outlet’s contribution to near-term sea level rise. This has broad implications for assessing the future mass
loss of ice sheets since it points to the importance of studying every major calving event individually.

1. Introduction

The Northeast Greenland Ice Stream (NEGIS) is a remarkable and rare dynamical flow feature of ice sheets.
Being the only of its kind in Greenland, it extends more than 600 km into the interior of the ice sheet
(Figure 1a, inset, colored contours) and terminates in three marine glaciers, 79N (NI), Zachariae (ZA), and
Storstrømmen [Fahnestock et al., 2001a; Joughin et al., 2001]. The northernmost two, NI and ZA, drain approxi-
mately 198,380 km2 (12%) of the ice sheet surface area (16% considering all three, dashed line in Figure 1, inset
[Zwally et al., 2012]), holding 1.1 m of sea level rise equivalent in their marine-based sector alone [Morlighem
et al., 2014; Mouginot et al., 2015] (Figure 1b, blue contours).

Because of its unusual geometry and potentially large contribution to near-term sea level rise, NEGIS is being
studied with increasing interest in order to quantify, and better understand, possible mass-flux drivers and
responses to perturbations under the present and a warming climate. On one hand, numerical models used
to quantify ice flow are increasingly attempting to resolve NEGIS as a coherent flow structure in large scale
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of Zachariae and 79N are 14% and
11%, respectively, consistent with
elsewhere on Greenland and are likely
triggered by enhanced subglacial
sliding due to surface melting

• The 79N speedup is unaffected
by subglacial sticky spots and is
incompatible with enhanced sliding
along the sidewalls confining its
floating tongue, whereas for
Zachariae the ice mélange at its
front might play an important role

• The 76 km long floating tongue
of 79N provides, at most, only
little resistance from its innermost
part, and the remaining outer
∼56–66 km could be lost
without large consequences
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Figure 1. Ice surface velocities (v⃗), flow lines, and bed/surface topography of Zachariae (ZA) and 79N (NI) outlet glaciers.
(a) Mean |v⃗| of 2016 (colored contours), v⃗ (wherever |v⃗|>0.1 km/yr) between 24 September and 14 October 2016
(arrows), and ZA and NI flow lines (black lines). The inset shows the northeast Greenland ice stream (NEGIS) drainage
area [Zwally et al., 2012] (dashed black line) together with the NEGIS surface velocity wherever |v⃗|>0.1 m/d (colored
contours). (b) Basal topography (colored contours) [Bamber et al., 2001; Morlighem et al., 2014], smoothed ice height
contours (white lines) [Howat et al., 2014], and ESA CCI 2016 grounding lines (dashed white lines) [ENVEO, 2016a] and
calving fronts [ENVEO, 2016b]. Gray hatched regions mark ice-free surfaces in both panels.

(ice sheet wide) modeling [Greve and Otsu, 2007; Seddik et al., 2012; Greve and Herzfeld, 2013; Schlegel et al.,
2013; Ahlkrona et al., 2016], thereby allowing for insights into, e.g., the role played by basal friction and topog-
raphy [Joughin et al., 2001; Greve and Otsu, 2007; Sergienko et al., 2014; Schlegel et al., 2015; Krabbendam, 2016],
the stationarity of its position [Karlsson and Dahl-Jensen, 2015], and the influence of external forcings on down-
stream mass fluxes [Schlegel et al., 2015]. On the other hand, new observational data continues to shed light
on otherwise unknown, or poorly understood, features of the flow, such as the geothermal hotspot suggested
to initiate NEGIS by lubricating the bed [Fahnestock et al., 2001b; Layberry and Bamber, 2001; Bamber et al.,
2013; Christianson et al., 2014; Keisling et al., 2014; Rogozhina et al., 2016], dynamically induced mass losses by
a multitude of external forcings [Khan et al., 2014], the influence of sea ice and the warm regional ocean circu-
lation around NI [Thomsen et al., 1997; Mayer et al., 2000; Reeh et al., 2000, 2001], the complicated ice rheology
near the upstream bounding shear margins [Bell et al., 2014], and interannual surface velocities suggesting
nontrivial, dissimilar behaviors of the two neighboring terminus glaciers, NI and ZA [Mouginot et al., 2015].

In this work, we further investigate the seasonal behavior of the ZA and NI outlets by considering new
high-temporal resolution surface velocity maps available every ∼12–20 days throughout 2016, combined
with atmospheric, subsurface, and ice flow modeling. Our aim is to put the observed interannual speedup
of ZA and NI into a seasonal context and to investigate to what extent seasonal and interannual drivers are
similar, which may help to better understand future changes.

2. Method and Results

Our analysis focuses on the observed 2016 seasonal behavior along the flow lines of ZA and NI (Figure 1).
The dimensions of the region investigated were chosen based on the interferometric wide swath width of
European Space Agency (ESA)’s Sentinel-1, which roughly overlaps with the domain considered by Mouginot
et al. [2015]. We use ESA Sentinel-1 synthetic aperture radar (SAR) data from tracks 074, 170, and 112 with
a 12 day repeat (24 day repeat in one case) between images to derive ice velocities. Data from these three
tracks were combined to construct 28 surface ice velocity maps for 2016 of the ZI and NI area with best
possible spatial coverage. The operational interferometric post processing (IPP) chain [Dall et al., 2015], devel-
oped at the Technical University of Denmark (DTU) Space and upgraded with offset tracking for ESA’s Climate
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Figure 2. Flow line profiles along ZA and NI. (a and d) Ice surface speeds, |v⃗|. (b and e) Radar cross-section 𝜎0 (surface
backscatter) from Sentinel-1A synthetic aperture radar (SAR) images [Copernicus, 2016] (high/low values are dry/wet
surface conditions). (c and f) Simulated accumulated runoff estimates (between the legend periods) using the
subsurface model by [Langen et al., 2015, 2017].

Change Initiative (CCI) Greenland project, was employed to derive the surface movement using offset track-
ing [Strozzi et al., 2002] assuming surface parallel flow using the digital elevation model from the greenland
mapping project (GIMP DEM) by Howat et al. [2014, 2015]. The ice velocity data are freely available from
www.promice.dk.

Figure 1a shows the 2016 mean surface velocity in colored contours based on the 28 velocity maps covering
2016, and Figure 1b shows the bounding geometry of the region based on basal topography by Bamber et al.
[2001] and Morlighem et al. [2014], ice thicknesses from the GIMP DEM, and calving fronts and grounding
lines by ENVEO [2016a, 2016b]. We note that the true ZA grounding line of 2016 is most likely located ∼15 km
upstream of the ESA grounding line, as suggested by the heavily rifted ice occurring on the remnant shelf
after the recent collapse of its floating tongue (vertically white hatched area in Figure 1a, see the supporting
information section S2).

These new highly temporally resolved surface velocity maps uniquely allow for detailed, remote process
studies. The top panels in Figure 2 show the along-flow line velocity profiles of (a) ZA and (d) NI for selected,
approximately evenly spaced, intervals of dates throughout 2016, ranging from winter (dashed blue) through
summer (dashed/solid red) to winter (solid blue). At the ZA outlet, a seasonal speedup is initiated between
8 June and 7 July, reaching more than 15 km–30 km upstream from the rifted ice margin (supporting
information section S2). After peaking with an increase of approximately 0.11 km/yr (14%) near the rifted ice
margin, a return to the winter baseline occurs between 12 September to 2 October. For NI, the speedup, too,
starts between 8 June to 7 July, peaks in 7–19 July with an increase of approximately 0.15 km/yr (11%) near
the grounding line, and returns to its winter baseline between 7 and 24 August.

In regions of fast flowing ice, such as ice streams, the motion is generally attributed to a plug-like flow
(constant velocity and strain rate throughout the thickness of the ice column) whereby the ice slides over
the bed due to deformation of soft sedimentary substrate (till) or due to a low effective pressure in the sub-
glacial drainage system, defined as the difference between the overburden and basal water pressure [Rose,
1979; Alley et al., 1986; Clarke, 1987; Macayeal et al., 1995; Luthi et al., 2002]. While the far upstream part of
NEGIS likely experiences a lowered effective pressure (permitting enhanced sliding) due to large basal melt
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rates [Fahnestock et al., 2001b; Christianson et al., 2014; Keisling et al., 2014], the basal state of the lower part is
less known. It is, however, likely that the downstream basal environment is not water saturated in the sense
that any additional water source could further enhance basal sliding. If so, it is plausible that the observed
speedups are caused by seasonal surface melt penetrating through the ice and decreasing the effective pres-
sure and/or lubricating the bed, as opposed to, e.g., ocean warming at the fronts suggested to trigger the
observed decadal speedups [Mouginot et al., 2015]. This mechanism has previously been suggested as a driver
of seasonal speedups at different outlet glaciers by subglacial channels being flooded at the onset of the
melt season, thereby increasing the basal water pressure leading to distributed drainage through intercon-
nected cavities (effectively creating a small film of water lifting the ice from its substrate) [Joughin et al., 2008a;
Stearns et al., 2008; Schoof , 2010; Chandler et al., 2013; Moon et al., 2014]. Later in the melt season when larger
subglacial conduits (channels) effectively dominate the water transport, the water pressure drops (effective
pressure increases) and the enhanced sliding ceases. This behavior has led to the suggestion that melt water
variability, rather than the mean flux or total amount, plays an important role in seasonally enhanced sliding
[Bartholomaus et al., 2008; Cuffey and Paterson, 2010; Schoof , 2010].

To test this hypothesis at ZA and NI, surface backscatter (radar cross section, 𝜎0) from Sentinel-1A synthetic
aperture radar (SAR) images [Copernicus, 2016] was investigated for signs of melting synchronous with the
velocity speedups. Since SAR backscattering over snow covers arises from subsurface volume scatterers of
snow/ice structures, such backscattering is sensitive to the wetness of the surface layer, which has previously
successfully been used to identify surface melting over Greenland on diurnal and seasonal timescales [Nghiem
et al., 2001; Steffen et al., 2004]. Figures 2b and 2e show that the backscatter along the two flow lines indeed
drops synchronously with the speedups (high/low values indicating dry/wet conditions), suggesting the melt
water quickly penetrates the ice (e.g., through crevasses or by hydraulic fracturing [Fountain et al., 2005; van
der Veen, 2007; Bartholomaus et al., 2008; Das et al., 2008]). Figure S1 in the supporting information further
displays the spatial extent of the melting, indicating not only surface melting reaching far upstream but also a
multitude of surface melt lakes, some as large as ≈5 km in diameter and rivers up to ≈20 km long, confirming
the presence of large amounts of surface melt water. Note that the existence of large lakes could, potentially,
delay the delivery of large volumes of water to the bed since filling and draining of lakes may be separated by
several weeks.

To further quantify the amount of liquid water equivalent (weq) present, we invoke the firn (subsurface)
model used in HIRHAM5 as documented by Langen et al., 2015 [HIRHAM5, 2017] but used in an operational
setup forced with 6-hourly surface energy fluxes and precipitation from the Danish Meteorological Institute’s
weather forecast model, HIRLAM 7.3 K05 [Undén et al., 2002; Rontu et al., 2009; Kjellström et al., 2005]. The firn
model allows the surface liquid water budget to be decomposed into components such as surface melt water
runoff, retention in snow pack, refreezing, and more. The accumulated runoff along the two flow lines is shown
in Figures 2c and 2f (accumulated over the time span indicated by the legends), suggesting poor retention in
the firn and potentially large amounts of surface melt that could reach the bed.

The fact that similar velocity changes occur along ZA and NI with almost an order of magnitude more runoff
along ZA compared to NI (on equal time intervals, Figures 2c and 2f) might suggest that melt water variability,
and not the total amount, is driving the observed speedup. Claiming that melting is the driver alone, however,
would be disregarding the possible seasonally dependant effects of the large ice mélange in front of ZA, the
floating tongue of NI, and the differences in basal environment along ZA and NI which could, potentially,
moderate their responses due to, e.g., sticky spots. If increased (upstream) basal lubrication is indeed causing
the observed changes alone, one might expect the ice mélange, floating tongue, and potential sticky spots
to exert only limited control over the velocity.

2.1. Role of the 79N Floating Tongue
To determine the influence of the 79N floating tongue, we further investigate if the tongue provides any resis-
tance at the grounding line, and to what degree it might change during the seasonal speedup. Principally,
such change could be caused either by a softening/warming of the fabric, thereby changing the internal stress
configuration of the tongue, or by an enhanced sliding occurring along the tongue-wall interfaces. In the sup-
porting information section S3, we show that derived strain rate maps indicate no seasonality, suggesting
little internal stress redistribution over the season. Moreover, noting that the NI shear margins are relatively
confined (Figure 3a), one might expect a weak coupling between the tongue and sidewalls. However, not-
ing the upstream shear margin widths are similar, and that our estimates of slipperiness along the sidewalls
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Figure 3. 79N stress budget derived from observations. (a) Strain rate field �̇�xy of 24 September and 14 October (in the
local basis of the ground line transect) used to delineate transects; (b) transect-averaged stress components, where full
lines are 2016 annual means and shades cover ±1 standard deviation.

are comparable to the subglacial values (supporting information section S4), we in the following give a more
detailed account of the role played by the tongue.

We note, however, that floating tongues are unlikely to contribute to the stress budget of upstream grounded
ice by actively providing resistance since (i) basal drag and lateral resistance from shear margins gener-
ally support grounded ice well, (ii) low-sloping equilibrium profiles are more likely to develop than tongues
with frictionless bases holding back high-sloping grounded ice, and (iii) shear margins of sidewall-bounded
tongues are likely weak (soft) because shearing tends to warm the ice, which, unlike for (unbounded)
grounded ice shear margins, is not replaced with cold ice by cross-margin flow.

In section 2.1.1, we adopt the data-oriented approach by Van Der Veen et al. [2011] to show that even if the
ice is assumed anchored to the sidewalls, the potential size (upper limit) of the resistive stress is indeed small
compared to the total (driving) stress budget. Note that while this suggests the tongue is mostly a dynami-
cally passive feature, it is not passive in the sense that removing the tongue would still produce a speedup
because the sea water column alone can no longer balance the weight of the ice. Subsequently in section 2.1.2,
we study the sensitivity of 79N to perturbations in basal slipperiness along the tongue-sidewall interfaces
and over the remaining grounded ice using the numerical ice flow model Úa [Gudmundsson et al., 2012],
suggesting the seasonal speedup is likely related to upstream changes in basal slipperiness and not enhanced
sidewall slipperiness.
2.1.1. Potential Resistance Provided by the 79N Tongue
In the Van Der Veen et al. [2011] approach, the sizes of the different stress components are estimated along the
flow line by calculating their average values over transects locally perpendicular to the flow. These transects,
which are picked at evenly spaced intervals (here Δx = 2 km), are delineated by their intersection with the ice
stream shear margins, defined as the parallel belts of maxima and minima in the strain rate field �̇�xy (Figure 3a,
orange/purple belts). Note that while transect orientations do not change much over the course of 2016, their
widths (i.e., shear margin positions) do during the summer speedup, in part due to poorer spatial coverage,
which is accommodated for in the following by calculating transect widths for each velocity map. Note also
that x and y denote the local (transect-wise) along-flow and normal directions.

Assuming plug flow, a transect-wise stress balance on the grounded part of NI implies that the driving
stress (𝜏d) is balanced by flow-resisting stresses associated with lateral drag imposed by shear margins (𝜏lat),
along-flow longitudinal tension/compression (𝜏lon), and basal drag (𝜏b), that is

𝜏d = 𝜏lat + 𝜏lon + 𝜏b (grounded part). (1)

The first three terms are defined as 𝜏d = −𝜌gH𝜕h∕𝜕x, 𝜏lat = 2B(HN�̇�
1∕n
xy,N − HS�̇�

1∕n
xy,S)∕W , and 𝜏lon =

−2B𝜕(H�̇�1∕n
xx )∕𝜕x, where (· · ·) denotes the transect average, 𝜌 = 917 kg/m3 the density of ice, g = 9.8 m/s

the gravitational acceleration, H the ice thickness, h the surface height, W the transect width, and n = 3 is
the Glen flow exponent. The flow parameter B was set to B = A−1∕n = 275 kPa/a3 (A being the rate factor),
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corresponding to an ice temperature of −5∘C, assuming the ice is warmer than the mean surface air tem-
perature, which in 2016 was −13∘C between the NI grounding line and 20 km upstream (HIRLAM 7.3 K05
data). Finally, the subscripts in HN and HS denote point evaluations on the northern (N) and southern (S) shear
margins respectively (similarly for �̇�xy,N and �̇�xy,S).

Note that the quantity of interest here, the tongue’s (resistive) contribution to the longitudinal stress field,
hereafter referred to as 𝜏t, is not directly obtainable from the observed strain rates, �̇�xx , since these reflect the
influence of the net longitudinal stress, 𝜏lon = 𝜏lon,0 + 𝜏t, where 𝜏lon,0 is the component associated with the
local ice geometry.

For the floating tongue, however, there is no basal drag, and the stress balance becomes

𝜏d = 𝜏lat + 𝜏lon + 𝜏r (floating part), (2)

where 𝜏d = −1∕2𝜌g(1−𝜌∕𝜌w)𝜕H2∕𝜕x, 𝜌w = 1027 kg/m3 being the density of sea water, and 𝜏r = 𝜏d−𝜏lat−𝜏lon

is the stress residual/imbalance, which is 𝜏r = 0 along the buttressed part of the tongue and 𝜏r < 0 along the
part potentially contributing to resisting the upstream flow.

Figure 3b shows the 2016-averaged components (full lines) ⟨𝜏d⟩, ⟨𝜏lat⟩, ⟨𝜏lon⟩, and the residual ⟨𝜏r⟩, together
with their standard deviation (filled colors). The figure indicates that (i) the residual, ⟨𝜏r⟩, is negative, suggest-
ing the tongue may provide some resistance, but (ii) that resistance is predominately provided by the first
10–20 km of the tongue, after which ⟨𝜏r⟩ ≈ 0.

In order to estimate the size of 𝜏t, we note that the integrated stress residual (hatched blue in Figure 3b) must
be balanced at the grounding line by the integral of 𝜏t from the grounding line and one coupling length
upstream (hatched red in Figure 3b), here chosen as 10 grounding line ice thicknesses (10Hgl = 6.0 km),
that is

∫
15km

0km
⟨𝜏r⟩dx = ∫

0km

−10Hgl

⟨𝜏t⟩dx ≈ 10Hgl⟨𝜏t⟩. (3)

Note that previous reports on coupling lengths suggest values between 7 and 15 ice thicknesses [Howat et al.,
2005, 2008; Kamb and Echelmeyer, 1986]. Assuming ⟨𝜏t⟩ to be evenly distributed over the coupling length,
rightmost integral in equation (3) may be approximated accordingly, thus allowing for a low order estimation
of ⟨𝜏t⟩ (red line in Figure 3b). In this case, the average ratio of (tongue) resistive stress to driving stress over
the coupling length is ⟨𝜏t⟩∕⟨𝜏d⟩

∗ = 34%, where ⟨𝜏d⟩
∗ = (10Hgl)−1 ∫ 0km

−10Hgl
⟨𝜏d⟩dx. Note the above are upper

estimates in the sense that the tongue might not be fully anchored to its sidewalls.
2.1.2. 79N Sensitivity to Tongue Length and Basal Slipperiness
In addition to estimating the potential resistive stress using the above data-oriented method, we also numer-
ically consider the velocity response along 79N to changes in basal slipperiness and tongue length by using
the finite-element ice flow model Úa [Gudmundsson et al., 2012] based on the shallow shelf approximation.

In section S4 in the supporting information, we use Úa for two separate sets of perturbation experiments
whereby the basal slipperiness and tongue length are covaried: in the first set the slipperiness along the
tongue-sidewall interfaces is uniformly perturbed relative to the slipperiness inverted from winter time veloc-
ities, whereas in the second set the slipperiness under the remaining (upstream) grounded ice is uniformly
perturbed. Considering both sets of perturbations thus allows us to test the hypothesis that seasonal changes
are caused by an upstream increase in basal slipperiness (melt-induced enhanced sliding) rather than e.g.,
downstream enhanced sliding along the sidewalls of the tongue.

The results suggest that once the tongue is less than 15 km long, the grounding line velocity becomes
very sensitive to any further decrease in tongue length, which is in agreement with the observational based
analysis in section 2.1.1, suggesting the innermost part might provide resistance. Note, however, that some
speedup is to be expected even without a tongue providing resistance because of the large thickness changes
that occur over the innermost part—cutting off the tongue there produces a force imbalance since the weight
of the removed tongue is replaced by the weight of a smaller column of sea water.

Considering the flow line response to uniform slipperiness perturbations over the grounded ice, the model
suggests that a ∼20% increase in upstream slipperiness is enough to reproduce both the amplitude and spa-
tial extent of the seasonal velocity change. Moreover, we find that enhanced sliding along the tongue-sidewall
margins alone gives rise to velocity changes only locally over the tongue. Thus, it seems unlikely the tongue
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plays a role in the seasonal speedup in the sense that increased sliding along the tongue-sidewall interface
cannot account for the full spatial extent of the observed seasonality. Instead, the speedup magnitude and
spatial extent seems consistent with a ∼20% increase in upstream basal slipperiness.

2.2. Role of the Zachariae Ice Mélange
In the supporting information, we further investigate the influence and timing of the Zachariae ice mélange
breakup. By defining the mélange as being mobilized/broken-up by the loss of surface feature correlation
between consecutive SAR images, indicating fast moving ice escaping the feature tracking window and/or
surface features being degraded due to melting, we find that the break up coincides with the onset of surface
melting upstream of the rifted zone, approximately 8 June. Note that because of the large height differences
of around 250 m–500 m between the rifted front and the upstream part, this needed not be so. The two events
coinciding does, unfortunately, not allow us to discern whether the ice mélange is in fact strong enough to
trigger upstream changes upon disintegration, or if surface melting is responsible. Nonetheless, Zachariae is
potentially an important case for further understanding the relative roles played by ice mélanges and surface
melting/basal lubrication in seasonal changes, one where mélange modeling and multi-year seasonal velocity
datasets may prove useful.

2.3. Role of Potential Subglacial Sticky Spots
Localized patches of basal friction, or “sticky spots,” have previously been suggested to play an important
role in the dynamics of ice streams [Kamb, 1991; Alley, 1993; Stokes et al., 2007]. Generally caused by bedrock
bumps, till-free areas, or subglacial meltwater frozen to the bed, sticky spots may help to stabilize ice streams
[Kamb, 1991; Stokes et al., 2007]. Because bedrock bumps are regarded as likely sources of sticky spots [Alley,
1993] and are possibly influential under active ice streams [Stokes et al., 2007], we further investigate in sup-
porting information section S4.2 their potential role in moderating the seasonal velocity changes observed
along ZA and NI.

Noting that the area along ZA with the greatest seasonal speedup is deeper, and likely weaker, than further
upstream close to a couple of bedrock bumps, one might suspect the large number of bedrock bumps along
NI to be especially influential. To determine their influence, we perform two sets of slipperiness perturba-
tion experiments using Úa whereby (i) the slipperiness is varied for all grounded ice except over small-scale
bedrock bumps (defined as bumps being taller than sea level) and (ii) the slipperiness is varied for all grounded
ice in addition to bedrock bumps being flattened (artificially set to sea level height). We find that while
the influence of bedrock bumps on the velocity field is small in magnitude and spatially local for both NI
and ZA (not shown for latter), the details of the subglacial environment potentially exert a greater con-
trol on the seasonal velocity response compared to e.g., changes in slipperiness along the tongue-sidewall
interfaces.

3. Discussion and Conclusions

Glaciers that discharge into the ocean are potentially large contributors to the uncertainty of sea level rise pre-
dictions of the near future. In particular, glaciers with floating tongues add to this uncertainty by their tongues
possibly acting as a downstream plug holding back the flow of ice. This underlines the need for understand-
ing the processes leading to the breaking up of floating tongues—be it by mechanical failure due to changes
in the stress configuration, subsurface hot water plumes destabilizing the tongue, related to calving by sur-
face melting filling up crevasses, or the ice mélange breaking up because of wind stresses. While there has
been some debate over the driving mechanism behind the sudden doubling in ice discharge of Jakobshavn
Isbræ coincident with the collapse of its floating tongue in 1998 [Truffer and Echelmeyer, 2003; Joughin et al.,
2008b; Holland et al., 2008; Van Der Veen et al., 2011], it stands, together with the recent large calving event at
the Larsen C ice shelf, as important examples of the need to understand the processes governing the stability
of floating tongues/shelves and whether they provide any resistance.

In this work, we found that the 76 km long floating tongue of 79N might provide some (small) resistance
from the innermost 15 km, suggesting a greater speedup may follow a potential collapse than otherwise
expected if it were just buttressed (albeit the resistance is small). This, we argue, emphasizes the need to con-
sider the consequences of calving events on an individual basis. In the light of the results presented here, it
seems important to understand the structural integrity of the 79N tongue to, e.g., the reported increasing sur-
rounding mean ocean temperature over the last decade [Mouginot et al., 2015]. In this context, we propose
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that high temporally resolved velocity data sets might provide unique opportunities to understand the
strength and durability of floating tongues (and their upstream systems) when exposed to changes in exter-
nal forcings over long time scales by investigating their response to forcings on a seasonal time scale, such as
attempted here.

In summary we presented a highly temporally resolved velocity data set derived from Sentinel-1A SAR
imagery allowing for insights into the seasonal behavior and drivers of the Zachariae (ZA) and 79N (NI) outlet
glaciers in northeast Greenland. We showed that extensive surface melt is present over ZA and NI, both area
wise and in terms of water equivalent, by combining SAR images with a numerical firn (subsurface) model to
quantify the seasonal runoff. In particular, we suggest that the observed speedups during the summer of 2016
of approximately 0.15 km/yr along NI is driven by surface melt water penetrating the ice and lubricating the
bed (decreasing the effective basal pressure), whereas the 0.11 km/yr speedup along ZA correlates equally
well with both the onset of surface melting and the breakup of its large ice mélange, making it less clear
whether the ice mélange is in fact strong enough to induce the observed seasonal changes upon break up.

By decomposing the near-terminus stress budget of NI, we find the potential resistance provided by the
floating tongue is at most on the order of 34% of the near-terminus stress budget (assuming the tongue is
actually anchored to the wall) and is constant across season, suggesting it is unlikely that the tongue moder-
ates the seasonal response much. By covarying the basal slipperiness and tongue length using the numerical
ice flow model Úa, we furthermore found (i) that the outermost ∼56–66 km of the tongue can be removed
without making NI unstable, (ii) that only an upstream increase in basal slipperiness of the grounded ice can
induce a change in the velocity field spatially consistent with the observed seasonal speedup (as opposed
to, e.g., enhanced sliding along the tongue-sidewall interfaces), and (iii) that subglacial sticky spots, such as
small-scale bedrock bumps, seem only to induce velocity changes small in magnitude and spatially local for
both NI and ZA, thus probably not providing large-scale moderation of the observed seasonal response.
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