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Abstract

ICESat has provided surface elevation measurements of the ice sheets since the
launch in January 2003, resulting in a unique data set for monitoring the changes of
the cryosphere. Here we present a novel method for determining the mass balance of
the Greenland ice sheet derived from ICESat altimetry data.5

Four different methods for deriving the elevation changes from the ICESat altimetry
data set are used. This multi method approach gives an understanding of the complex-
ity associated with deriving elevation changes from the ICESat altimetry data set.

The altimetry can not stand alone in estimating the mass balance of the Greenland
ice sheet. We find firn dynamics and surface densities to be important factors in de-10

riving the mass loss from remote sensing altimetry. The volume change derived from
ICESat data is corrected for firn compaction, vertical bedrock movement and an in-
tercampaign elevation bias in the ICESat data. Subsequently, the corrected volume
change is converted into mass change by surface density modelling. The firn com-
paction and density models are driven by a dynamically downscaled simulation of the15

HIRHAM5 regional climate model using ERA-Interim reanalysis lateral boundary con-
ditions.

We find an annual mass loss of the Greenland ice sheet of 210±21 Gt yr−1 in the
period from October 2003 to March 2008. This result is in good agreement with other
studies of the Greenland ice sheet mass balance, based on different remote sensing20

techniques.

1 Introduction

Different satellite based measuring techniques have been used to observe the present-
day changes of the Greenland ice sheet (GrIS). Synthetic Aperture Radar (SAR) imag-
ing reveals an acceleration of a large number of outlet glaciers in Greenland (Abdalati25

et al., 2001; Rignot et al., 2004; Rignot and Kanagaratnam, 2006; Joughin et al., 2010).
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Gravity changes observed by the Gravity Recovery And Climate Experiment (GRACE)
show a significant mass loss (Velicogna and Wahr, 2005; Luthcke et al., 2006; Wouters
et al., 2008; Sørensen and Forsberg, 2010; Wu et al., 2010). Local elevation changes
of the GrIS with significant thinning along the ice margin are revealed by laser altimetry
(Slobbe et al., 2008; Howat et al., 2008; Pritchard et al., 2009).5

We provide a novel mass balance estimate of the GrIS for the period 2003–2008, de-
rived from elevation measurements from NASA’s Ice, Cloud, and land Elevation Satel-
lite (ICESat), firn compaction and surface density modelling.

Different methods have been used to derive secular surface elevation change es-
timates

(dH
dt

)
of snow or ice covered areas from ICESat data (Fricker and Padman,10

2006; Howat et al., 2008; Slobbe et al., 2008; Pritchard et al., 2009). Here we use four
different methods to derive dH

dt , and the differences are investigated.
The total volume change of the GrIS is found by fitting a smooth surface, which cov-

ers the entire ice sheet, to the ICESat derived dH
dt estimates. The conversion of the

derived dH
dt values to mass changes is based on firn compaction and surface density15

modelling, forced by climate parameters from a regional climate model (RCM). Other
studies have linked climate models and surface mass balance models in order to esti-
mate the mass balance of the GrIS (Li et al., 2007; van den Broeke et al., 2009), but in
our approach we directly use the estimated dH

dt values from ICESat to derive the total
mass balance including firn dynamics, driven by the HIRHAM5 high resolution RCM.20

The HIRHAM5 simulation is a dynamical downscaling of the ECMWF ERA-Interim re-
analysis (Sect. 5.2).

The first part of this paper is dedicated to the description of the ICESat data and
the methods used for deriving elevation and volume changes of the GrIS (Sects. 2
to 3). The volume change estimates and their associated uncertainties are presented25

in Sect. 4.
In the second part of this paper, the volume to mass conversion is described (Sects. 5

to 7). This includes the changes in the firn compaction and surface density of the GrIS.
The theoretical treatment of the firn dynamics involved in elevation changes without
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contributing to the mass balance of the GrIS is presented in Sect. 5. The findings from
both observations and model treatment are combined to derive the total mass balance
of the GrIS in Sect. 7.

2 ICESat data

ICESat carries the Geoscience Laser Altimeter System (GLAS) instrument (Abshire5

et al., 2005). Technical problems with the GLAS instrument early in the mission have
resulted in a significant reduction in repeated tracks, and hence in spatial resolution.
Successive tracks are separated by approximately 30 km in the southern part of Green-
land, because the GLAS instrument has been operating only 2–3 months per year.

The GLAS/ICESat Antarctic and Greenland Ice Sheet Altimetry Data product10

(GLA12) (Zwally et al., 2010) was downloaded from the National Snow and Ice Data
Center. This level-2 altimetry product provides geolocated and time tagged ice sheet
surface elevation estimates, with respect to the TOPEX/Poseidon reference ellipsoid.
The satellite laser footprint size is 30–70 m and the distance between the footprint cen-
ters is approximately 170 m. This study is based on the 91-day repeat cycle ICESat15

data (release 31) from October 2003 to March 2008. The time span and release num-
ber of the laser campaigns in the data set are listed in Table 1.

2.1 ICESat data pre-processing

A procedure of data culling and application of corrections is necessary to reduce some
of the systematic errors in the ICESat data set, and to remove problematic measure-20

ments (Smith et al., 2005). Saturation of the waveform can induce errors in surface
elevation estimates (Fricker et al., 2005). Applying the saturation correction to the rele-
vant measurements, which are flagged in the data files, reduces these errors (NSIDC,
2010). We have also used the difference between the shape of the return signal and
a Gaussian fit (the IceSvar parameter), to evaluate data. Large differences indicate25
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less reliable surface elevation estimates, and measurements for which the misfit is
large (IceSvar≥0.04 V) are rejected from the further analysis. Multiple peaks can be
caused by reflections from clouds. All measurements that contain more than one peak
in the return signal are rejected from the analysis. Besides these two criteria, we have
also used data quality flags and warnings given with the data to reject problematic5

measurements. We find that these thresholds result in a satisfactory size of crossover
error.

Only measurements from the GrIS and the surrounding glaciers and ice caps are
considered in the elevation change analysis. The total number of ICESat measure-
ments from the ice covered areas is 10 367 807. After rejecting problematic measure-10

ments in the data culling procedure, the number is reduced by approximately 13% to
9 053 639. The details are listed in in Table 1.

3 Methods for deriving surface elevation changes

The individual ICESat tracks are not precisely repeated but can be up to several hun-
dred meters apart. Thus the observed elevation difference between tracks contains15

contributions from terrain, seasonal variations and secular trends.
The fact that the ICESat tracks are not exactly repeated, complicates the methods

for deriving dH
dt along-track, due to the presence of a cross-track slope, caused by the

topography. The cross-track slope must be determined and subtracted in order to de-
rive the actual elevation change. Several methods for doing this have previously been20

published (Fricker and Padman, 2006; Howat et al., 2008; Slobbe et al., 2008; Pritchard
et al., 2009). We present dH

dt results obtained by using four different methods (M1–M4).
The methods have different strengths and weaknesses, which become apparent when
comparing the results. M1–M3 are along-track analysis and are all set up to estimate
dH
dt at a 500 m along-track resolution. M4 is a crossover analysis, and hence the spatial25

resolution obtained by this method is lower. An observed elevation difference between
tracks will also include a seasonal signal, caused by variations in accumulation, flow
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and melt during the year. In all four approaches we solve for both a secular trend dH
dt

and a seasonal signal, s(t). Hence, the time dependent surface elevation, H̃(t), is
parameterised as:

H̃(t)=
(

dH
dt

)
t+s(t), (1)

where the seasonal signal is given by:5

s(t)=Dcos
(

2π
T

t+φ
)
=αcos(ωt)+βsin(ωt), (2)

with amplitude D=
√
α2+β2, period T (365 days), and a phase φ.

Each of the dH
dt estimates from the four methods are associated with a variance from

the regression procedure applied. dH
dt values associated with a large variance are not

used in the mass balance calculation.10

3.1 Method 1

In principle, a Digital Elevation Model (DEM) could be used to correct for the surface
slope, and this approach is used in the first method (M1). Unfortunately there are
no independent, sufficiently accurate high resolution DEM’s available which cover the
entire GrIS. Following Slobbe et al. (2008), we choose the DEM generated from the15

first campaigns of ICESat data (DiMarzio et al., 2007). The grid spacing of this DEM is
1 km and the elevations are given relative to the WGS 84 ellipsoid.

In order to subtract the DEM from the ICESat data, the DEM is linearly interpolated
to estimate the value in each data location. The height of each ICESat measurement
above the reference DEM is given by:20

∆HM1 =H ICESat−HDEM , (3)

where H ICESat is translated into elevations above the WGS84 ellipsoid, to be compara-
ble with the DEM elevations (HDEM).
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The measurements are catagorized according to the ICESat track (i ) and 500 m
along-track segment denoted j . The mean of the ∆HM1 values of each ICESat cam-
paigns is calculated in each segment, creating time series of ∆H̄M1 values along-track.

∆H̄M1
i j =


Ai j
Bi j
αi j
βi j

(t̄,1,cosωt,sinωt
)
, (4)

where Ai j =
(dH

dt

)
i j , Bi j is the offset between the DEM and the ICESat elevations in the5

segment, and t̄ is the mean time of a campaign in a given segment.
The governing equation, Eq. (4) is solved using ordinary least squares regression.
Only the long wavelength component of the terrain slope is removed, due to the

relative low resolution of the DEM, compared to the spacing of the ICESat along-track
measurements. The 1 km resolution is too low to capture the true topography in some10

areas, and this will most likely be reflected in the elevation changes calculated using
this method.

3.2 Method 2

The second method (M2) is similar to the one presented by Pritchard et al. (2009).
In each of the along-track segments, a reference surface is created from elevation15

measurements from two ICESat campaigns. The reference surface is represented by

a centroid point (x0,y0,H0) and slopes
(

dH
dx ,

dH
dy

)
. The choice of the two campaigns

which are used to generate the reference surface is based on two criteria. The first
criterium is that the two campaigns are separated by one year in time. This ensures
that both the seasonal signal and the actual change in elevation between the two are20

minimized. The second criterium is the ICESat tracks used to generate the reference
surface, are the ones that span the largest area. These criteria help to ensure that the
reference surface is representative of the surface slope. Hence, it is considered the
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reference for all other ICESat measurements in a given along-track segment, similar to
the use of a DEM in M1:

∆HM2 =H ICESat−H ref , (5)

The height of the reference surface in a point (x,y) is given by:

H ref
i j =

(
dH
dx

)
i j

(x−x0)+
(

dH
dy

)
i j

(y−y0)+H0 . (6)5

The approach of solving for dH
dt is similar to Eq. (4).

In spite of the criteria used to select the ICESat campaigns from which the reference
surface is generated, method M2 is sensitive to seasonal variations and actual eleva-
tion changes between the two campaigns chosen. The dH

dt estimates will therefore be
biased.10

3.3 Method 3

The third method (M3) is similar to the one presented in Howat et al. (2008) and Smith
et al. (2009). In each along-track segment, the surface elevation HM3 is assumed to
vary linearly with position (x,y), time (t) and a sine and cosine term, describing the
seasonal signal:15

HM3
i j =



Ai j
Bi j
αi j
βi j(dH
dx

)
i j(

dH
dy

)
i j


(
t̄,1,cosωt,sinωt,(x−x0),(y−y0)

)
, (7)

where Ai j =
(dH

dt

)
i j ,
(dH

dx

)
is the along-track slope,

(
dH
dy

)
is the cross-track slope, and

Bi j is an estimate of the topography underlying the elevation changes. (x0,y0) is the
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centroid point of the area spanned by all of the measurements in the track segment. In
each segment, a least squares linear regression is performed to estimate the elevation
change.

This method is sensitive to track geometry, since the method assumes that the H de-
pendence in x,y and t is independent. For certain track constellations this will certainly5

not be the case.

3.4 Method 4

In the fourth method (M4), elevation changes are estimated only at crossover locations.
From the ICESat data set (2003–2008), we find 458 432 crossovers.

The surface elevation at a track crossover location is found by linear interpolation of10

the closest points on the two tracks, located at each side of the crossover. In order
to secure a fair estimate of the elevation at the crossover, a crossover is rejected if
the north-south distance between the two closest points are grater than 500 m. This
rejection criterium results in a subset of approximately 266 701 crossovers accepted
for further analysis.15

In contrary to the other three methods M1–M3, the elevation change at the crossover
locations only contains the seasonal signal and the actual change in elevation. The
elevation change is estimated in the crossover location of track n and m by a simple
least squares linear regression.

∆HM4
nm =Anm∆tnm+snm(t)+Bnm , (8)20

where ∆HM4
nm contains the elevation differences between track n and m, and ∆tnm

contains the corresponding time differences. Anm =
(dH

dt

)
nm is the estimated elevation

change in the location of the crossover between track n and m, snm(t) is the seasonal
signal and Bnm is the offset.

The disadvantage of this method is the poor spatial coverage of elevation change25

results, especially in the southern part of Greenland.
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3.5 Elevation change results

The elevation changes obtained by the four methods show that there is a good agree-
ment between the patterns of elevation changes (see Fig. 1a–d). A distinct thinning of
the ice sheet is generally found along the southeast and west coast, while a smaller
but consistent thickening is found in the interior part of the ice sheet, which is in agree-5

ment with other altimetry studies (Abdalati et al., 2001; Thomas et al., 2008, 2009;
Slobbe et al., 2008; Pritchard et al., 2009). On the more local scale, the thickening of
Flade Isblink (81.4◦ N, 15.1◦ W) and Storstrømmen (77.1◦ N, 22.6◦ W) are identified by
all methods.

A fixed threshold of 6 m2 for the variance associated with the fit of the regression is10

applied, and the number of output values from each method is an indication of how
well a given method performs. The number of dH

dt estimates with variance below the
threshold is 264 635 for M1, 257 241 for M2, 276 717 for M3, and 4457 for M4.

This result indicates that M3 is preferable, since the largest number of accepted
output values is obtained with this method.15

4 Deriving volume changes

In order to estimate the total annual volume change, a smooth surface is fitted through
the dH

dt estimates, which covers the entire ice sheet. For this purpose ordinary kriging
is used. The uncertainty in the total volume change is quantified using a bootstrap
method.20

4.1 Interpolation of volume changes

The dH
dt estimates are interpolated onto a 5×5 km grid, using ordinary kriging. For

all 4 method results, an exponential variogram model with a practical range of 150 km
has been used. The range and the choice of model are based on the experimental
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variogram. Due to the large number of the dH
dt estimates, local neighborhood kriging is

used. Cross validation analysis is applied in order to determine the sufficient number
of closest points to be used in the interpolation. In order to pass on the variances from
the regression analysis, from which the elevation changes are determined, these have
been added to the variogram model (Pebesma, 1996). The R package gstat has been5

used for the kriging procedure (Pebesma, 2004).
The estimated volume changes are summarized in Table 2. The estimates are of

little significance without knowing their associated uncertainties. It is often difficult
analytically to keep track of the error when different calculations have been performed
on data, and therefore a bootstrap method (Davison and Hinkley, 2006) is used to10

quantify the uncertainty.

4.2 Bootstrapping

Bootstrap is a resampling method (Davison and Hinkley, 2006). The basic idea of this
method can be explained by the following steps.

(1) Create a resample by drawing random samples with replacements from an orig-15

inal data set, where it is assumed that the observations are independent. In this
way a new data set is obtained with the same length as the original data set.

(2) Estimate the wanted parameter from the resample, in this case the annual volume
change.

(3) Repeat step 1 and 2 N times.20

These estimates represents a distribution of the wanted parameter, from which infor-
mation of the uncertainty can be obtained.

Here, the original data set is the set of dH
dt estimates. For each method 1000 re-

samples are created, from which an error estimate can be found. For method M1, M2,
and M3 a resample is made by sampling between entire tracks contrary to individual25
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dH
dt values, since these are highly correlated along-track. In method M4 the dH

dt values
are independent at the crossover locations, hence a resample is made by sampling
between the dH

dt values.

4.3 Volume change results

The 1000 bootstrap resamples make up the distributions of the volume changes. For5

all methods these distributions are approximately normally distributed and centered
around the point estimate of the volume change (see Fig. 2). Hence the 95% confi-
dence interval of the volume change will be ±2σ, where σ is the standard deviation.
The error estimates of the volume changes are summarized in Table 2.

There is a relatively large spread in the resulting volume changes. In order to deter-10

mine which method gives the best estimate, the four methods must be reevaluated.
Method M4 gives the smallest volume change estimate of −147±24 km3 yr−1. This

was expected since the density of crossovers is clearly under-represented in the south-
ern part of Greenland (see Fig. 1) where the largest thinning is found, and many of the
outlet glaciers in these regions will then not be captured correctly. We believe that the15

volume estimate found from M2 of −179±15 km3 yr−1 is also an under-estimation. It
is likely that the reference surface, which is created in M2, contains an actual elevation
change, and this will result in biased dH

dt values. The fact that M2 most likely damp-
ens the signal of areas with large elevation changes, is also reflected in the relatively
low standard deviation of the bootstrap procedure. The volume change results from20

methods M1 and M3 are similar, with volume change estimates of −225±23 km3 yr−1

and −237±25 km3 yr−1, respectively. We find that a larger number of accepted dH
dt are

obtained from M3 than M1, see Sect. 3.5, and that the M1 estimates are associated
with larger variances than those of M3. Furthermore, it is seen in Fig. 2 that the M1
distribution is wider than the M3 distribution.25

From the above argumentation it is concluded that method M3 gives the most reliable
estimate of the volume change.
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5 Modelling firn compaction and surface densities

Firn compaction and surface density of the ice sheet must be taken into account, in
order to relate the ICESat measurements of changes in surface elevation to mass
changes. The firn compaction responds dynamically to changes in surface temperature
and precipitation. This dynamic response will not contribute to the mass balance of5

the GrIS, and therefore it is subtracted from the observed elevation change before
converting it into mass change.

In general the change in surface elevation can be parameterised by

dH
dt

=
ḃ
ρ
+wc+wice+

ḃm

ρ
+wbr−us

dS
dx

−ub
dB
dx

, (9)

where ḃ is the surface mass balance, ρ is the density of the snow or ice, wc is the10

vertical velocity of the surface due to the changes in firn compaction, in the following
referred to as the firn compaction velocity. wice is the vertical velocity of the ice matrix,
ḃm is the basal mass balance, wbr is the vertical velocity of the underlying bedrock
associated with glacio-isostatic adjustment, us is the horizontal ice velocity of the sur-
face, S, and ub is the horizontal velocity of the ice at the bed B (Paterson, 2002; Zwally15

and Li, 2002; Helsen et al., 2008). A cartesian coordinate system with a vertical axis
pointing upwards is used and we define accumulation positive and ablation negative.
Changes in wice can be neglected over short time spans (Zwally and Li, 2002) and ḃm,
us

dS
dx and ub

dB
dx are assumed to be constant. Thus, over the short time span of the

ICESat measurement Eq. (9) can be used to express the rate of mass change of the20

GrIS, derived from observations of the elevation change,

ḃ=

(
dH ICESat

dt
−wc−wbr

)
ρ, (10)

where dH ICESat

dt is the estimated elevation change observed from ICESat altimetry. wc
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and ρ can only be estimated from models of the firn compaction and density and wbr
is estimated in accordance to Sect. 6.1.

5.1 Firn compaction model

In order to estimate the effect of firn compaction on short time scales, a time-dependent
densification model is needed. Following Reeh (2008), the time-dependent contribution5

to the elevation change from changes in firn compaction is the sum of annual firn layer
anomalies with respect to a steady state reference. The steady state reference is
defined as the youngest layer in the firn column which is unaffected by the inter-annual
variability in the surface temperature and surface mass balance. The firn compaction
velocity is then defined as10

wc =
1
∆t

t−t0∑
t2=0

t−t0−t2∑
ti=0

(λ(t0+t2,t0+ti )−λref(t0+ti )) , (11)

where t0 is the time of deposition, λ(t0,t) is the annual layer thickness at a time t= t0+ti
after deposition, and λref is the steady state reference. λ(t0,t) depends on the local
mass balance and is given by

λ(t0,t)=

{(
(b(t0)−r(t0))ρi

ρf(t0,t)
+r(t0)

)
τ , if b(t0)≥0

b(t0)δ(t−t0)τ , if b(t0)<0
, (12)15

where r(t0) is the amount of refrozen melt water, ρi is the density of ice, τ is a time
constant usually equivalent to one year and δ is the Kronecker delta function (Reeh
et al., 2005). The firn density ρf(t0,t) can be derived from the Zwally and Li (2002)
parameterisation of the Herron and Langway (1980) densification model

ρf(t0,t) =

{
ρi− (ρi−ρs(t0))exp(−cti ) , if ρf(t0,t)≤ρc

ρi− (ρi−ρc)exp(−c(ti −tc)) , if ρf(t0,t)>ρc
(13)20
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where ρc is the critical firn density of 550 kg/m3 defined by Herron and Langway (1980),
tc is the time it takes for the firn to reach the critical density, and c is the densifica-
tion constant describing the linear change in air volume in the firn due to the over-
laying pressure (Reeh, 2008). The Zwally and Li parameterisation differs from the
original Herron and Langway densification model by the parameterisation of c, where5

the Zwally and Li parameterisation is more sensitive to the temperature (Reeh, 2008).
This sensitivity is important when evaluating changes in firn compaction on short time
scales.

The densification constant is given by

c=
b(t)ρi

ρw
β(T )KG(T ), (14)10

where β(T ) is a scale factor accounting for changes in grain growth with temperature T
and ρw is the density of water. KG is the rate factor for densification adjusted for grain
growth

KG =K0G
exp
(
E (T )

RT

)
=8.36T−2.061 (15)

Here, K0G
is the rate factor only for grain growth, E is the activation energy and R is15

the gas constant (Zwally and Li, 2002; Reeh, 2008). The effect of grain growth (β) was
assumed to be eight by (Zwally and Li, 2002). Later empirical studies reported a site
dependency of β between seven and three (Li et al., 2003) at sites with an annual mean
temperature between −30 and −22 ◦C. We assume β = 8, since this study covers the
entire GrIS, where annual mean temperature is exceeding temperatures of −22 ◦C in20

some areas.

5.2 HIRHAM5 – forcing of the firn compaction model

The annual mean temperature at two meter above the surface, runoff, snowfall and
precipitation variables, required for the firn compaction model, are produced by dy-
namically downscaling the European Centre for Medium-Range Weather Forecast25
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(ECMWF) ERA-Interim reanalysis with the HIRHAM5 regional climate model (RCM).
The HIRHAM5 RCM (Christensen et al., 2006) is a hydrostatic RCM developed at the
Danish Meteorological Institute (DMI). It is based on the HIRLAM7 dynamics (Eerola,
2006) and ECHAM5 physics (Roeckner et al., 2003). The ERA-Interim reanalysis (Sim-
mons et al., 2007), provided by the ECMWF, is a comprehensive reanalysis of the state5

of the atmosphere, using measurements from satellite, weather balloons and ground
stations.

A continuous simulation with HIRHAM5 at 0.05 deg. (∼5.55 km) resolution on a ro-
tated grid is realized from 1989–2008 using the ECMWF ERA-Interim at T255 (∼0.7◦

or ∼77 km) as lateral boundary conditions. The sea-surface temperature and sea-10

ice distribution, taken from ERA-Interim, were interpolated to the HIRHAM5 grid and
prescribed to the model. The wind components, atmospheric temperature, specific hu-
midity and surface pressure from ERA-Interim were transmitted to HIRHAM5 every six
hours for each atmospheric model level of the HIRHAM5 RCM. At the lateral bound-
aries of the model domain, a relaxation scheme according to Davies (1976) is applied15

with a buffer zone of ten grid boxes. The high 5.5 km horizontal resolution data are
appropriate to determine the precipitation distribution over the sharp edge of the ice
sheet, where the ablation zone is located. The dynamical downscaling with a RCM
allows to simulate climate variables, which are physically consistent, for every grid cell
of the domain.20

A comparison of the publicly available 1.5◦×1.5◦ ERA-Interim and the HIRHAM5 dy-
namical downscaling are shown in Fig. 3. It is clear how the high resolution HIRHAM5
RCM run is able to account for the complex coastal topography in Greenland. The
coastal precipitation patterns propagate far inland to areas above the equilibrium line
altitude (ELA), where the firn compaction is applied. This pattern is not captured by the25

ERA-Interim (see Fig. 3) and shows the need for the high resolution RCM’s input to the
firn compaction modelling.
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5.3 Interpolated metric grid

In order to derive the mass change of the GrIS the area of each grid box has to be
known. To ensure equal area of each grid box the high resolution data from the
HIRHAM5 RCM is interpolated onto the equal distance 5× 5 km grid by a nearest
neighbor interpolation. The snowfall of 2008 in the two different map projections is5

shown in Fig. 3. It is seen that the pattern of snowfall is preserved after the grid trans-
formation. However, the interpolation becomes noisier the greater the distance is to
the equator of the original HIRHAM map projection. The noise is seen in the high
precipitation area near Station Nord in the Northeastern Greenland. Despite the noise
induced by the transformation of map projections, the equal distance grid gives a good10

approximation of the precipitation and temperature field over the GrIS produced by the
HIRHAM5 model. We will use the HIRHAM5 on the equal distance grid, to force the
surface density and firn compaction.

5.4 Refreezing of melt water and formation of ice lenses

On the GrIS, 60% of the run-off given by the HIRHAM5 RCM is assumed to refreeze15

in the snowpack (Reeh, 1991). The accumulation is calculated as the sum of snowfall
and the refrozen run-off. To simplify the following derivation of a time dependent den-
sification model the refrozen run-off is assumed to refreeze inside the annual layer in
the firn, from which it originates, and the water is not allowed to penetrate deeper into
the firn column. This assumption is in violation with observations from the Arctic snow-20

pack where melt water is often seen to penetrate the snowpack until it reaches a hard
layer where the melt water flows along until it refreezes or finds a crack to propagate
downwards into the deeper firn (Benson, 1962; Bøggild, 2000; Jansson et al., 2003). In
order to be able to model this behavior, sub-annual layering of the densification model
and knowledge of grain growth in water-saturated firn would be required. Both of these25

are outside the scope of the present study of firn compaction, where the overburden
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pressure is believed to be the driving force, despite the fact that melt water percolation
may redistribute the load on a layer.

5.5 Results of firn compaction and density modelling

The density of the snow/ice involved in the mass change of the GrIS in Eq. (10), is
modeled in order to derive the mass change of the GrIS from the ICESat measure-5

ments. The density is assumed to be either the density of ice or firn, depending on the
location on the ice sheet. The density of the surface firn is highly dependent on the
temperature during the precipitation event.

In the ablation zone, defined here for simplification as the area below the ELA, all
elevation change is assumed to be caused by ice. Above the ELA, in the accumula-10

tion zone, an elevation increase is assumed to be caused by an addition of snow/firn.
However, an elevation decrease is assumed to be caused by the remote removal of
ice in the ablation zone as a response to ice dynamics. The surface density is then
parameterised by

ρ=
{
ρs , if dH

dt ≥0 and H ≥ELA
ρi , else

, (16)15

where ρs is the surface density of firn including ice lenses, and is given by

ρs =
ρ0

1− r
b

(
1− ρ0

ρi

) . (17)

Here, r is the amount refrozen melt water inside an annual firn layer, ρi = 900 kg m−3

and ρ0 is the temperature dependent density of new firn before formation of ice lenses

ρ0 =625+18.7T +0.293T 2 (18)20

(Reeh et al., 2005). T is the temperature given in ◦C. The ELA is determined using the
polynomial parameterisation described by Box et al. (2004), where the ELA is given by
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a 2nd order polynomial in West Greenland and a 5th order polynomial in East Green-
land as a function of the latitude.

Based on the HIRHAM5 climatology for the period 1989 to 2008, the annual firn layer
thickness has been computed according to Eq. (12). To derive the firn compaction
velocity from Eq. (11) a steady state reference (λref) has to be defined. The time span5

of the climate record is too short to define a robust steady state reference for the firn
compaction. Moreover, the inter-annual variation in temperature and precipitation will
bias a chosen reference to the climate pattern that is dominant in the time span of
the reference period. To avoid defining the steady state reference layer thickness we
have chosen to compare the thickness of the top firn layers in the period from 2003 to10

2008. The maximum number of layers, which can be evaluated in 2003, is 15. Hence
the thickness of the top 15 layers is compared from year to year in the period 2003 to
2008 at each grid point above the ELA. The change in the thickness is seen in Fig. 4a,
along with the error in the linear fit in Fig. 4d. The change in the thickness of the 15
layers is a combination of changes in accumulation/surface melt and changes in the15

firn compaction. The change in the accumulation given in ice equivalent for the top 15
layer thickness is seen in Fig. 4b. By subtracting the change in the thickness of the 15
layers in ice equivalent from the 15 layer firn thickness, the change in air volume of the
top firn, is found. The rate of change in this air volume in the firn is equivalent to the
firn compaction velocity defined in Eq. (11). The approach of evaluating the relative20

change in air volume in each grid point above the ELA avoids the definition of a steady
state reference for the firn compaction. The resulting firn compaction velocity is the
linear trend in air volume of the top 15 layers for period 2003 to 2008, and is depicted
in Fig. 4c. The error in the linear fit is seen Fig. 4f.

In Fig. 4c it is seen how the firn compaction velocity is mainly increasing in the central25

area of the GrIS, whereas, the firn in the coastal areas is becoming more dense. This
pattern shows the importance of taking the firn processes into account, when relating
an observed elevation change to a change in total mass balance of the GrIS. Depend-
ing on the assumed density of the volume changes the firn correction decreases the
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mass loss of the ice sheet with 33–67 Gt yr−1. This is a reduction of the mass loss of
up to 30%, when compared to the direct mass loss estimate from the ICESat measure-
ments without any firn compaction correction.

The error induced by the HIRHAM5 RCM in the firn compaction model is difficult
to account for. Further studies have to be conducted to compare the modeled firn5

densities with in situ measurements before it is possible to estimate the total errors
in the firn compaction velocity. Hence, the only error estimate of the firn compaction
model is from the error in the linear fit of the inter-annual variability of the firn column.
The 2σ are seen in the lower panel of Fig. 4. As seen in the figure the error associated
with the firn compaction velocity is most pronounced in coastal areas near large outlet10

glaciers, where the HIRHAM5 RCM has the largest variability.
The error in the fitted firn compaction velocities will result in an error in the estimate

of the total mass loss of the GrIS. The error seen in Fig. 4f has been summed over
each of the 5×5 km grid boxes above the ELA, to give the resulting volume error. This
volume induced by the error in the fitted firn velocities is then converted into mass by15

the surface density, resulting in a firn compaction induced error between 14–30 Gt yr−1

depending on which ice or firn density is assumed.

6 Additional elevation change corrections

The elevation changes observed by ICESat include signals from processes which do
not contribute to the mass balance of the GrIS. The most significant contribution is the20

firn compaction, but it is also necessary to correct for glacial isostatic adjustment (GIA),
elastic uplift caused by the present-day mass changes and the ICESat intercampaign
elevation biases.
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6.1 Vertical bedrock movement

Elevation changes which are not related to ice volume changes will be detected by
ICESat, and these must be removed from the estimated dH

dt values in order to determine
the mass balance of the ice sheet. A bedrock movement (wbr) caused by GIA and
elastic uplift from present-day mass changes will be a part of the elevation changes5

observed by ICESat.
We use a GIA contribution, according to Peltier (2004). It is based on the ice history

model ICE-5G and the VM2 Earth model (http://pmip2.lsce.ipsl.fr/design/ice5g/). The
rate of vertical motion caused by GIA is removed from the ICESat dH

dt estimates. We
find that this correction contributes to the mass balance of the GrIS with an amount of10

approximately +1 Gt yr−1.
The present-day ice sheet mass changes cause an elastic response of the bedrock

(e.g., Khan et al., 2010). These vertical displacements are computed by solving the
Sea Level Equation, the fundamental equation that governs the sea level changes as-
sociated with glacial isostatic adjustment (Farrell and Clark, 1976). Since the time scale15

of the mass changes considered here is extremely short compared with the Maxwell
relaxation time of the mantle (Spada et al., 2010), any viscoelastic effect is neglected
and the ice thickness variations deduced by ICESat are spatially convolved with purely
elastic loading “h” Love numbers. Sea level variations associated with melting are com-
puted first, taking into account the elastic response of the Earth and the gravitational20

interaction between the ice sheets, the oceans and the mantle. Then, vertical displace-
ments are retrieved by the surface load history over the entire surface of the Earth, as-
sociated with ice thickness variations and sea level changes. The results in Fig. 5 are
obtained from a suitably modified version of the code SELEN 2.9 (Spada and Stocchi,
2007), which solves the Sea Level Equation iteratively, essentially following a variant25

of the pseudo-spectral method introduced by Mitrovica and Peltier (1991). A maximum
harmonic degree lmax = 128 is used here. Vertical displacement is computed in the
reference frame with the origin in the center of mass of the system (Earth+Load), and
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includes the harmonic component of degree one (Greff-Lefftz and Legros, 1997). We
find that the elastic uplift correction correspond to −4 to −2 Gt yr−1, dependent on the
mass loss. The elastic vertical displacement based on the results from method M3
(Sect. 3.3) is shown in Fig. 5.

6.2 ICESat intercampaign bias correction5

It has been documented that there are elevation biases between the different ICESat
laser campaigns. Following the method described in Gunter et al. (2009), the trend in
the ICESat intercampain bias is estimated by (O. B. Andersen and T. Bondo, personal
communication, 2010). The GLA15 release 31 ocean altimetry elevations are com-
pared to a mean sea surface topography model (DNSC08). The trend is found to be10

1.29±0.4 cm yr−1, when corrected for an assumed actual sea level rise of 0.3 cm yr−1

(Leuliette et al., 2004). This trend in intercampaign biases contributes with approxi-
mately 14±4 Gt yr−1 to the mass balance.

7 Mass balance of the GrIS

Determining the mass change of the GrIS is a complex problem with multiple solutions,15

depending on the type of observation and/or the level of theoretical complexity applied
to solve the problem. This complexity can explain the different estimates of the total
mass balance of the GrIS, which appear in the literature. To summarize the results
of our studies, the total mass balance estimates of the GrIS are listed in Table 2. We
have chosen to derive the mass change with and without the firn compaction correction20

of elevation change, to highlight the importance of this correction. The second key
assumption in the derivation of the mass loss is ρ, from which the volume change is
related to mass. The assumption, that an elevation decrease above the ELA is caused
by a loss of glacial ice somewhere in the ablation area by ice dynamics, enhances
the estimated mass loss of the GrIS. Therefore, the total mass balances estimates25
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(Table 2) are derived with and without this remote mass loss of ice. In the calculation
without remote ice loss, ρs is applied for all elevation changes above the ELA.

Our best estimate of the present total mass balance of the GrIS is −210±21 Gt yr−1

based on the comprehensive error analysis of the ICESat observations and theoretical
treatment of the surface density and firn compaction modelling. The spatial distribution5

of the mass balance is seen in Fig. 6. This mass loss is equivalent to a global sea level
rise of 0.58 mm yr−1. The uncertainty estimate on the mass change is obtained from
the bootstrap procedure. Each resample is transformed into a mass change estimates
according to Sect. 5, hence the 1000 resamples will make up a distribution from which
the error is obtained.10

The mass loss of the major outlet glaciers is evident in the figure, along with the
interior part of the GrIS showing no changes over the period. The western side of
the South Greenland ice divide is appearing to gain mass, which may be caused by
the increasing precipitation (cf. Fig. 4c). The most prominent area of mass increase is
the upper area of the Storstrømmen (Bøggild et al., 1994) outlet glacier in Northeast15

Greenland. The ice sheet drainage basin ending in Storstrømmen is believed to origi-
nate in the central part of the GrIS near the summit area (Rignot and Kanagaratnam,
2006). Therefore, changes in Storstrømmen glacier may be caused by effects inland,
or the dynamical response of the GrIS due to changes in climate. However, this has to
be verified by additional studies of this area.20

8 Discussion and conclusions

Using four different methods to derive elevation changes of the GrIS from ICESat
data during the period 2003–2008 reveals a consistent picture of massive ice thin-
ning along the margin of the GrIS and a smaller elevation increase in the interior
parts. The thinning is most evident along the southeast and the west coasts. An25

interpolation and bootstrap approach is applied, in order to derive a total annual vol-
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ume change of snow/ice together with uncertainties for all four methods. We find vol-
ume changes of −237±25 km3 yr−1 to −147±24 km3 yr−1 depending on the method
used. We conclude that method 3 is preferable, corresponding to a volume change of
−237±25 km3 yr−1.

In order to correct the observed elevation changes for processes not contributing to5

the mass balance, we have estimated the firn compaction, vertical bedrock movement
caused by GIA and elastic uplift, and the ICESat intercampaign elevation bias.

The firn compaction model is forced by the HIRHAM5 RCM, and we find this cor-
rection to be the largest and that it contributes with approximately +57±14 Gt yr−1 to
the total mass balance. The trend in the ICESat intercampaign bias is found to be10

−1.29±0.4 cm yr−1 which corresponds to a mass gain of approximately 14±4 Gt yr−1.
The elastic uplift of the bedrock, caused by the present-day mass changes are found
to contribute with −4 to −2 Gt yr−1 to the total mass balance and the GIA correction is
+1 Gt yr−1.

The firn compaction model can, beside its application shown here, also be used to15

validate the RCM forcing, by comparing the modelled stratification of the firn with in situ
observation from the GrIS. However, a model comparison study of different RCs for the
GrIS has not been within the scope of the presented work, but might be elaborated in
the future.

Modelled surface densities are used to convert the volume change into mass bal-20

ance. Based on the preferred method M3, for deriving elevation changes, we estimate
a mass balance of the GrIS for 2003–2008 of −210±21 Gt yr−1. This mass loss is
equivalent to a global sea level rise of 0.58 mm yr−1.

This mass balance estimate is in good agreement with results by others. Based
on GRACE data, Velicogna (2009) has estimated the mass loss to be 230±33 Gt yr−1

25

during the period 2002–2009, and Wouters et al. (2008) find a mass loss of 179±
25 Gt yr−1 for the years 2003–2008. van den Broeke et al. (2009) find a total mass
balance of −237±20 Gt yr−1 for 2003–2008, from modeled surface mass balance and
observed discharge.
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Finally, our total mass balance result is large compared to the ICESat derived mass
loss of 139±68 Gt yr−1 found by Slobbe et al. (2009), based on data from 2003 to 2007.
We believe that we have improved the application of ICESat data to estimate the total
mass balance of the GrIS, by using a novel approach including firn compaction and
density modelling.5
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Table 1. ICESat data description. Shown is the laser campaign identifier (ID), data release
number (RL), and time span of the campaigns. N and M are the number of measurements
from the GrIS before and after the data culling, respectively.

ID RL Time span N M

L2A 531 4 Oct 2003–18 Nov 2003 1 095 647 941 052
L2B 531 17 Feb 2004–20 Mar 2004 815 998 695 242
L2C 531 18 May 2004–20 Jun 2004 739 672 680 031
L3A 531 3 Oct 2004–8 Nov 2004 851 789 727 425
L3B 531 17 Feb 2005–24 Mar 2005 829 689 704 680
L3C 531 20 May 2005–22 Jun 2005 800 876 679 827
L3D 531 21 Oct 2005–23 Nov 2005 821 825 695 949
L3E 531 22 Feb 2006–27 Mar 2006 883 492 752 123
L3F 531 24 May 2006–25 Jun 2003 743 702 626 463
L3G 531 25 Oct 2006–27 Nov 2003 809 655 698 710
L3H 531 12 Mar 2007–14 Apr 2007 838 647 778 350
L3I 531 2 Oct 2007–4 Nov 2007 761 576 705 639
L3J 531 17 Feb 2008–21 Mar 2008 375 239 368 148

Total 10 367 807 9 053 639
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Table 2. The total mass balance the GrIS estimated based on the different methods of ICESat
processing and assumptions in the firn compaction modelling. The contribution to the total
mass balance above and below the ELA is specified, along with the total mass balance above
an altitude of 2000 m. The error estimate from the firn compaction modelling is derived only for
the full firn correction. Note that the mass balance below the ELA is unaffected by firn model
processes and is therefore the same for all firn assumptions.

With remote removal of ice Without remote removal of ice
ICESat Above Above Below Above Above
Volume Total ELA 2000 m ELA Total ELA 2000 m

[km3 yr−1] [Gt yr−1] [Gt yr−1] [Gt yr−1] [Gt yr−1] [Gt yr−1] [Gt yr−1] [Gt yr−1]

With firn correction
M1 −225±23 −199±20 −72 −7 −127 −157 −30 +6
M2 −179±15 −155±12 −54 −5 −101 −121 −20 +7
M3 −237±25 −210±21 −77 −8 −133 −166 −33 +5
M4 −147±24 −118±21 −40 −9 −78 −92 −14 +2

Without firn correction
M1 −225 −256 −129 −28 −127 −190 −63 −5
M2 −179 −212 −111 −25 −101 −154 −53 −4
M3 −237 −267 −134 −29 −133 −199 −66 −5
M4 −147 −177 −99 −31 −78 −126 −48 −9
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(a) (b)

(c) (d)

Fig. 1. Elevation changes derived from ICESat data using 4 different methods. (a) M1, (b) M2,
(c) M3, and (d) M4.
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Fig. 2. Violin plot of the 4 method results. The blue area indicates the distribution of 1000
bootstrap samples. The red dots are the point estimates of volume change, and the red bars
indicate the 95% confidence interval.
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[m]

Fig. 3. The 2008 snowfall on a scale at 0 to 2 m of water equivalent (from blue to red). (Left)
The ERA-Interim 1.5◦×1.5◦ resolution linear interpolated onto the equal distance 5 km×5 km
grid. (Middle) The regional HIRHAM5 dynamical downscaling of the ERA-Interim. HIRHAM5
applies a rotated map projection, with a grid spacing of 0.05◦×0.05◦. This projection gives
a metric resolution of ∼5.5 km×5.5 km. (Right) Nearest neighbor interpolation of the HIRHAM5
onto the equal distance 5 km×5 km grid. The highly dynamic behavior of the precipitation from
the HIRHAM5 model is preserved in the transformation of the map projections.
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Fig. 4. The different contributions to the the firn compaction modelling for the period from 2003
to 2008, forced by the HIRHAM5 climatology. Only the area above the ELA is shown in the
figure. The upper panels show the modeled firn process, estimated from a linear fit for the
period 2003 to 2008. (a) The modeled change in the thickness of the top 15 annual firn layers.
(b) The change of ice equivalent thickness of the top 15 annual firn layers. (c) The change in air
volume in the top firn, which is equivalent to the firn compaction velocity defined in Eq. (11). The
work flow of the computations is (c)= (a−b). (d), (e) and (f) show the 2σ standard deviation of
the linear trend in (a), (b) and (c), respectively.
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Fig. 5. Elastic vertical displacement caused by present-day mass changes in Greenland, re-
ferred to the period of one year, computed according to mass changes obtained by M3.
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Fig. 6. The yearly spatial distribution of the mass change of the GrIS, derived for each of the
grid cells. The result is based on the estimate derived by M3. The pattern of coastal thinning
seen in Fig. 1 is also found in the mass change of the GrIS.
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