1,682 research outputs found

    Thermal control surfaces experiment: Initial flight data analysis

    Get PDF
    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed

    Density-Dependent Analysis of Nonequilibrium Paths Improves Free Energy Estimates II. A Feynman-Kac Formalism

    Full text link
    The nonequilibrium fluctuation theorems have paved the way for estimating equilibrium thermodynamic properties, such as free energy differences, using trajectories from driven nonequilibrium processes. While many statistical estimators may be derived from these identities, some are more efficient than others. It has recently been suggested that trajectories sampled using a particular time-dependent protocol for perturbing the Hamiltonian may be analyzed with another one. Choosing an analysis protocol based on the nonequilibrium density was empirically demonstrated to reduce the variance and bias of free energy estimates. Here, we present an alternate mathematical formalism for protocol postprocessing based on the Feynmac-Kac theorem. The estimator that results from this formalism is demonstrated on a few low-dimensional model systems. It is found to have reduced bias compared to both the standard form of Jarzynski's equality and the previous protocol postprocessing formalism.Comment: 21 pages, 5 figure

    Registration of Heat Capacity Mapping Mission day and night images

    Get PDF
    Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer

    Molecular Realism in Default Models for Information Theories of Hydrophobic Effects

    Get PDF
    This letter considers several physical arguments about contributions to hydrophobic hydration of inert gases, constructs default models to test them within information theories, and gives information theory predictions using those default models with moment information drawn from simulation of liquid water. Tested physical features include: packing or steric effects, the role of attractive forces that lower the solvent pressure, and the roughly tetrahedral coordination of water molecules in liquid water. Packing effects (hard sphere default model) and packing effects plus attractive forces (Lennard-Jones default model) are ineffective in improving the prediction of hydrophobic hydration free energies of inert gases over the previously used Gibbs and flat default models. However, a conceptually simple cluster Poisson model that incorporates tetrahedral coordination structure in the default model is one of the better performers for these predictions. These results provide a partial rationalization of the remarkable performance of the flat default model with two moments in previous applications. The cluster Poisson default model thus will be the subject of further refinement.Comment: 5 pages including 3 figure

    Thermal control surfaces experiment flight system performance

    Get PDF
    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space

    Structural ensembles of disordered proteins from hierarchical chain growth and simulation

    Get PDF
    Disordered proteins and nucleic acids play key roles in cellular function and disease. Here, we review recent advances in the computational exploration of the conformational dynamics of flexible biomolecules. While atomistic molecular dynamics (MD) simulation has seen a lot of improvement in recent years, large-scale computing resources and careful validation are required to simulate full-length disordered biopolymers in solution. As a computationally efficient alternative, hierarchical chain growth (HCG) combines pre-sampled chain fragments in a statistically reproducible manner into ensembles of full-length atomically detailed biomolecular structures. Experimental data can be integrated during and after chain assembly. Applications to the neurodegeneration-linked proteins α-synuclein, tau, and TDP-43, including as condensate, illustrate the use of HCG. We conclude by highlighting the emerging connections to AI-based structural modeling including AlphaFold2

    Photoionization cross sections of O II, O III, O IV, and O V: benchmarking R-matrix theory and experiments

    Get PDF
    For crucial tests between theory and experiment, ab initio close coupling calculations are carried out for photoionization of O II, O III, O IV, O V. The relativistic fine structure and resonance effects are studied using the R-matrix and its relativistic variant the Breit Pauli R-matrix (BPRM) approximation. Detailed comparison is made with high resolution experimental measurements carried out in three different set-ups: Advanced Light Source at Berkeley, and synchrotron radiation experiments at University of Aarhus and University of Paris-Sud. The comparisons illustrate physical effects in photoionization such as (i) fine structure, (ii) resolution, and (iii) metastable components. Photoionization cross sections sigma{PI} of the ground and a few low lying excited states of these ions obtained in the experimental spectrum include combined features of these states. Theoretically calculated resonances need to be resolved with extremely fine energy mesh for precise comparison. In addition, prominent resonant features are observed in the measured spectra from transitions allowed with relativistic fine structure, but not in LS coupling. The sigma_{PI} are obtained for ground and metastable (i) 2s^22p^3(^4S^o, ^2D^o, ^2P^o) states of O II, (ii) 2s^22p^2(^3P,^1D,^1S) and 2s2p^3(^5S^o) states of O III, (iii) 2s^22p(^2P^o_J) and 2s2p^2(^4P_J) levels of O IV, and (iv) 2s^2(^1S) and 2s2p(^3P^o,^1P^o) states of O V. It is found that resonances in ground and metastable cross sections can be a diagnostic of experimental beam composition, with potential ap plications to astrophysical and laboratory plasma environments.Comment: 27 pages, 7 figs., submitted to Phys. Rev. A., text with high resolution figures at http://www.astronomy.ohio-state.edu/~pradhan/Oions.p
    corecore