166 research outputs found

    The woody plants of New Hampshire, Station Bulletin, no.447

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    Ontogeny of the barley plant as related to mutation expression and detection of pollen mutations.

    Get PDF
    Clustering of mutant pollen grains in a population of normal pollen due to premeiotic mutational events complicates translating mutation frequencies into rates. Embryo ontogeny in barley will be described and used to illustrate the formation of such mutant clusters. The nature of the statistics for mutation frequency will be described from a study of the reversion frequencies of various waxy mutants in barley. Computer analysis by a "jackknife" method of the reversion frequencies of a waxy mutant treated with the mutagen sodium azide showed a significantly higher reversion frequency than untreated material. Problems of the computer analysis suggest a better experimental design for pollen mutation experiments. Preliminary work on computer modeling for pollen development and mutation will be described

    Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous Media

    Full text link
    The dynamics of tensile crack fronts restricted to advance in a plane are studied. In an ideal linear elastic medium, a propagating mode along the crack front with a velocity slightly less than the Rayleigh wave velocity, is found to exist. But the dependence of the effective fracture toughness Γ(v)\Gamma(v) on the crack velocity is shown to destabilize the crack front if (dΓ)/(dv)<0(d\Gamma)/(dv)<0. Short wavelength radiation due to weak random heterogeneities leads to this instability at low velocities. The implications of these results for the crack dynamics are discussed.Comment: 12 page

    Time and length scales in supercooled liquids

    Full text link
    We numerically obtain the first quantitative demonstration that development of spatial correlations of mobility as temperature is lowered is responsible for the ``decoupling'' of transport properties of supercooled liquids. This result further demonstrates the necessity of a spatial description of the glass formation and therefore seriously challenges a number of popular alternative theoretical descriptions.Comment: 4 pages, 4 figs; improved version: new refs and discussion

    Recognition of facial emotions among maltreated children with high rates of post–traumatic stress disorder

    Get PDF
    Objective. The purpose of this study is to examine processing of facial emotions in a sample of maltreated children showing high rates of post-traumatic stress disorder (PTSD). Maltreatment during childhood has been associated independently with both atypical processing of emotion and the development of PTSD. However, research has provided little evidence indicating how high rates of PTSD might relate to maltreated children’s processing of emotions. Method. Participants’ reaction time and labeling of emotions were measured using a morphed facial emotion identification task. Participants included a diverse sample of maltreated children with and without PTSD and controls ranging in age from 8 to 15 years. Maltreated children had been removed from their homes and placed in state custody following experiences of maltreatment. Diagnoses of PTSD and other disorders were determined through combination of parent, child, and teacher reports. Results. Maltreated children displayed faster reaction times than controls when labeling emotional facial expressions, and this result was most pronounced for fearful faces. Relative to children who were not maltreated, maltreated children both with and without PTSD showed enhanced response times when identifying fearful faces. There was no group difference in labeling of emotions when identifying different facial emotions. Conclusions. Maltreated children show heightened ability to identify fearful faces, evidenced by faster reaction times relative to controls. This association between maltreatment and atypical processing of emotion is independent of PTSD diagnosis

    Fracture in Mode I using a Conserved Phase-Field Model

    Full text link
    We present a continuum phase-field model of crack propagation. It includes a phase-field that is proportional to the mass density and a displacement field that is governed by linear elastic theory. Generic macroscopic crack growth laws emerge naturally from this model. In contrast to classical continuum fracture mechanics simulations, our model avoids numerical front tracking. The added phase-field smoothes the sharp interface, enabling us to use equations of motion for the material (grounded in basic physical principles) rather than for the interface (which often are deduced from complicated theories or empirical observations). The interface dynamics thus emerges naturally. In this paper, we look at stationary solutions of the model, mode I fracture, and also discuss numerical issues. We find that the Griffith's threshold underestimates the critical value at which our system fractures due to long wavelength modes excited by the fracture process.Comment: 10 pages, 5 figures (eps). Added 2 figures and some text. Removed one section (and a figure). To be published in PR

    Waveforms and Sonic Boom Perception and Response (WSPR): Low-Boom Community Response Program Pilot Test Design, Execution, and Analysis

    Get PDF
    The Waveforms and Sonic boom Perception and Response (WSPR) Program was designed to test and demonstrate the applicability and effectiveness of techniques to gather data relating human subjective response to multiple low-amplitude sonic booms. It was in essence a practice session for future wider scale testing on naive communities, using a purpose built low-boom demonstrator aircraft. The low-boom community response pilot experiment was conducted in California in November 2011. The WSPR team acquired sufficient data to assess and evaluate the effectiveness of the various physical and psychological data gathering techniques and analysis methods

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    Zero-point vacancies in quantum solids

    Full text link
    A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known that both JWF and SWF describe a quantum solid with also a finite equilibrium concentration of vacancies x_v. We outline a route for estimating x_v by exploiting the existing formal equivalence between the absolute square of the ground state wave function and the Boltzmann weight of a classical solid. We compute x_v for the quantum solids described by JWF and SWF employing very accurate numerical techniques. For JWF we find a very small value for the zero point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently gives the best variational description of solid 4He, we find the significantly larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also study two and three vacancies. We find that there is a strong short range attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy
    • …
    corecore