5,344 research outputs found

    The Garching-Bonn Deep Survey (GaBoDS) Wide-Field-Imaging Reduction Pipeline

    Full text link
    We introduce our publicly available Wide-Field-Imaging reduction pipeline THELI. The procedures applied for the efficient pre-reduction and astrometric calibration are presented. A special emphasis is put on the methods applied to the photometric calibration. As a test case the reduction of optical data from the ESO Deep Public Survey including the WFI-GOODS data is described. The end-products of this project are now available via the ESO archive Advanced Data Products section.Comment: 6 pages, 3 figures, proceedings of ESO Calibration Workshop 200

    A review of modern insulin analogue pharmacokinetic and pharmacodynamic profiles in type 2 diabetes: improvements and limitations

    Get PDF
    Insulin analogues have been engineered to enhance desired molecular properties without altering immunogenicity. The majority of insulin pharmacology studies are conducted in healthy volunteers and patients with type 1 diabetes. At present, there are more patients with type 2 than type 1 diabetes receiving insulin treatment. As the responsibility for initiating insulin therapy in these patients continues to shift to primary care, it will be important for general practitioners to understand the different pharmacological properties of insulin preparations in patients with type 2 diabetes, so that treatment can be adapted to meet patients’ physiological and lifestyle requirements. The purpose of this review is to summarize pharmacological studies of insulin analogues in patients with type 2 diabetes. Faster onset of action of rapid acting insulin analogues has improved postprandial glycaemic control. Biphasic insulin analogues are associated with a lower incidence of nocturnal hypoglycaemia compared with human biphasic preparations and allow for intensification from once to twice or thrice daily dosing. More predictable glycaemic-lowering profiles of the insulin analogues have also led to reductions in nocturnal hypoglycaemia, particularly comparing long-acting insulin analogues with protaminated human insulin. Enhancing insulin self-association and reversible binding with albumin has led to further reductions in variability. However, improvements can still be made. Effective once daily clinical dosing of long-acting insulin analogues is not possible in all patients. In addition, the protaminated component of biphasic insulin analogues do not provide the duration of action or profile for physiological basal insulin replacement and neither insulin glargine nor insulin detemir are suitable for mixing with other insulin analogues as this would substantially alter their pharmacokinetic properties. Enhancing the pharmacological predictability and extending the duration of action could simplify insulin titration and further reduce the incidence of hypoglycaemia

    Monte Carlo simulations of fluid vesicles with in plane orientational ordering

    Full text link
    We present a method for simulating fluid vesicles with in-plane orientational ordering. The method involves computation of local curvature tensor and parallel transport of the orientational field on a randomly triangulated surface. It is shown that the model reproduces the known equilibrium conformation of fluid membranes and work well for a large range of bending rigidities. Introduction of nematic ordering leads to stiffening of the membrane. Nematic ordering can also result in anisotropic rigidity on the surface leading to formation of membrane tubes.Comment: 11 Pages, 12 Figures, To appear in Phys. Rev.

    Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Full text link
    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2x_{2-x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx_x) at the surface during vacuum annealing at temperatures as low as 600 {\deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx_x surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2_2 thin films prepared and measured under identical conditions, the formation of HfCx_x was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating

    Declarative Choreographies and Liveness

    Get PDF
    Part 1: Full PapersInternational audienceWe provide the first formal model for declarative choreographies, which is able to express general omega-regular liveness properties. We use the Dynamic Condition Response (DCR) graphs notation for both choreographies and end-points. We define end-point projection as a restriction of DCR graphs and derive the condition for end-point projectability from the causal relationships of the graph. We illustrate the results with a running example of a Buyer-Seller-Shipper protocol. All the examples are available for simulation in the online DCR workbench at http://dcr.tools/forte19

    A novel transcriptome subtraction method for the detection of differentially expressed genes in highly complex eukaryotes

    Get PDF
    We have designed a novel transcriptome subtraction method for the genome-scale analysis of differential gene expression in highly complex eukaryotes, in which suppression subtractive hybridization (SSH) is performed first to enrich the target and, after exchange of adapters, negative subtraction chain (NSC) is then used to eliminate the remaining background. NSC evolved from differential subtraction chain (DSC). We designed novel adapters which make the subtraction system more robust. SSH and NSC were then combined to successfully detect differentially expressed genes in Solanum. The combined technique improves qualitatively upon SSH, the only commercially available transcriptome subtraction system, by detecting target genes in the middle abundance class, to which most differentially expressed genes in highly complex eukaryotes are expected to belong. The main advantage of the combined technique with SSH/NSC is its ability to isolate differentially expressed genes quickly and cost-efficiently from non-standard models, for those microarrays are unavailable

    Uncovering the (un-)occupied electronic structure of a buried hybrid interface

    Get PDF
    The energy level alignment at organic/inorganic (o/i) semiconductor interfaces is crucial for any light-emitting or -harvesting functionality. Essential is the access to both occupied and unoccupied electronic states directly at the interface, which is often deeply buried underneath thick organic films and challenging to characterize. We use several complementary experimental techniques to determine the electronic structure of p-quinquephenyl pyridine (5P-Py) adsorbed on ZnO(10-10). The parent anchoring group, pyridine, significantly lowers the work function by up to 2.9 eV and causes an occupied in-gap state (IGS) directly below the Fermi level EFE_\text{F}. Adsorption of upright-standing 5P-Py also leads to a strong work function reduction of up to 2.1 eV and to a similar IGS. The latter is then used as an initial state for the transient population of three normally unoccupied molecular levels through optical excitation and, due to its localization right at the o/i interface, provides interfacial sensitivity, even for thick 5P-Py films. We observe two final states above the vacuum level and one bound state at around 2 eV above EFE_\text{F}, which we attribute to the 5P-Py LUMO. By the separate study of anchoring group and organic dye combined with the exploitation of the occupied IGS for selective interfacial photoexcitation this work provides a new pathway for characterizing the electronic structure at buried o/i interfaces
    corecore