183 research outputs found

    The Spitzer Archival Far-InfraRed Extragalactic Survey

    Get PDF
    We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of far-infrared data in two wavelength bands (70 um and 160 um) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40,000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals.Comment: 7 pages, 6 figures, published in ApJ

    Intergalactic HII Regions Discovered in SINGG

    Get PDF
    A number of very small isolated HII regions have been discovered at projected distances up to 30 kpc from their nearest galaxy. These HII regions appear as tiny emission line objects in narrow band images obtained by the NOAO Survey for Ionization in Neutral Gas Galaxies (SINGG). We present spectroscopic confirmation of four isolated HII regions in two systems, both systems have tidal HI features. The results are consistent with stars forming in interactive debris due to cloud-cloud collisions. The H-alpha luminosities of the isolated HII regions are equivalent to the ionizing flux of only a few O stars each. They are most likely ionized by stars formed in situ, and represent atypical star formation in the low density environment of the outer parts of galaxies. A small but finite intergalactic star formation rate will enrich and ionize the surrounding medium. In one system, NGC 1533, we calculate a star formation rate of 1.5e-3 msun/yr, resulting in a metal enrichment of ~1e-3 solar for the continuous formation of stars. Such systems may have been more common in the past and a similar enrichment level is measured for the `metallicity floor' in damped Lyman-alpha absorption systems.Comment: accepted for publication in the Astronomical Journal, 19 pages, including 5 figures, some low resolution. Paper with high resolution images can be downloaded from http://astro.ph.unimelb.edu.au/~eryan/publications/eldots.ps.g

    Three-body correlations in the Nagaoka state on the square lattice

    Full text link
    A three-body scattering theory previously proposed by one of the present authors is developed to be applied to the saturated ferromagnetic state in the two-dimensional Hubbard model. The single-particle Green's function is calculated by taking account of the multiple scattering between two electrons and one hole. Several limiting cases are discussed and the relation to the variational principle is examined. The importance of the three-body correlation is demonstrated in comparison with the results of the ladder approximation. A possible phase boundary for the Nagaoka ground state is presented for the square lattice, which improves the previous variational results.Comment: 13 pages, 8 Postscript figures, submitted to Phys.Rev.

    The Survey for Ionization in Neutral Gas Galaxies- II. The Star Formation Rate Density of the Local Universe

    Full text link
    We derive observed Halpha and R band luminosity densities of an HI-selected sample of nearby galaxies using the SINGG sample to be l_Halpha' = (9.4 +/- 1.8)e38 h_70 erg s^-1 Mpc^-3 for Halpha and l_R' = (4.4 +/- 0.7)e37 h_70 erg s^-1 A^-1 Mpc^-3 in the R band. This R band luminosity density is approximately 70% of that found by the Sloan Digital Sky Survey. This leads to a local star formation rate density of log(SFRD) = -1.80 +0.13/-0.07(random) +/- 0.03(systematic) + log(h_70) after applying a mean internal extinction correction of 0.82 magnitudes. The gas cycling time of this sample is found to be t_gas = 7.5 +1.3/-2.1 Gyr, and the volume-averaged equivalent width of the SINGG galaxies is EW(Halpha) = 28.8 +7.2/-4.7 A (21.2 +4.2/-3.5 A without internal dust correction). As with similar surveys, these results imply that SFRD(z) decreases drastically from z ~ 1.5 to the present. A comparison of the dynamical masses of the SINGG galaxies evaluated at their optical limits with their stellar and HI masses shows significant evidence of downsizing: the most massive galaxies have a larger fraction of their mass locked up in stars compared with HI, while the opposite is true for less massive galaxies. We show that the application of the Kennicutt star formation law to a galaxy having the median orbital time at the optical limit of this sample results in a star formation rate decay with cosmic time similar to that given by the SFRD(z) evolution. This implies that the SFRD(z) evolution is primarily due to the secular evolution of galaxies, rather than interactions or mergers. This is consistent with the morphologies predominantly seen in the SINGG sample.Comment: 15 pages, 5 figures, ApJ in press. Data available at http://sungg.pha.jhu.edu/PubData/ Corrected: Minor typos and formatting issues fixe

    The Survey for Ionization in Neutral Gas Galaxies: I. Description and Initial Results

    Get PDF
    We introduce the Survey for Ionization in Neutral Gas Galaxies (SINGG), a census of star formation in HI-selected galaxies. The survey consists of H-alpha and R-band imaging of a sample of 468 galaxies selected from the HI Parkes All Sky Survey (HIPASS). The sample spans three decades in HI mass and is free of many of the biases that affect other star forming galaxy samples. We present the criteria for sample selection, list the entire sample, discuss our observational techniques, and describe the data reduction and calibration methods. This paper focuses on 93 SINGG targets whose observations have been fully reduced and analyzed to date. The majority of these show a single Emission Line Galaxy (ELG). We see multiple ELGs in 13 fields, with up to four ELGs in a single field. All of the targets in this sample are detected in H-alpha indicating that dormant (non-star forming) galaxies with M(HI) > ~3e7 M_sun are very rare. A database of the measured global properties of the ELGs is presented. The ELG sample spans four orders of magnitude in luminosity (H-alpha and R-band), and H-alpha surface brightness, nearly three orders of magnitude in R surface brightness and nearly two orders of magnitude in H-alpha equivalent width (EW). The surface brightness distribution of our sample is broader than that of the Sloan Digital Sky Survey spectroscopic sample, the (EW) distribution is broader than prism-selected samples, and the morphologies found include all common types of star forming galaxies (e.g. irregular, spiral, blue compact dwarf, starbursts, merging and colliding systems, and even residual star formation in S0 and Sa spirals). (abridged)Comment: 28 pages, ApJS, in press. Full resolution version with all panels of Fig. 8 available at http://sungg.pha.jhu.edu/publications.html . On line data available at http://sungg.pha.jhu.edu/PubData/ . Author list corrected. Wrong value for f_ap used in eq. 7 now corrected; typos corrected, non-used references replaced, others update

    UVUDF: Ultraviolet Imaging of the Hubble Ultradeep Field with Wide-field Camera 3

    Get PDF
    We present an overview of a 90-orbit Hubble Space Telescope treasury program to obtain near ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (i) Investigate the episode of peak star formation activity in galaxies at 1<z<2.5; (ii) Probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (iii) Examine the escape fraction of ionizing radiation from galaxies at z~2-3; (iv) Greatly improve the reliability of photometric redshift estimates; and (v) Measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z~1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instrument's capability to add background light through a "post-flash". Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z~1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5 sigma in a 0.2 arcsecond radius aperture depending on filter and observing epoch.Comment: Accepted A

    Cosmic Ray Electrons in Groups and Clusters of Galaxies: Primary and Secondary Populations from a Numerical Cosmological Simulation

    Get PDF
    We study the generation and distribution of high energy electrons in cosmic environment and their observational consequences by carrying out the first cosmological simulation that includes directly cosmic ray (CR) particles. Starting from cosmological initial conditions we follow the evolution of primary and secondary electrons (CRE), CR ions (CRI) and a passive magnetic field. CRIs and primary CREs are injected and accelerated at large scale structure shocks. Secondary CREs are continuously generated through inelastic p-p collisions. We include spatial transport, adiabatic expansion/compression, Coulomb collisions, bremsstrahlung, synchrotron (SE)and inverse Compton (IC) emission. We find that, from the perspective of cosmic shock energy and acceleration efficiency, the few detections of hard X-ray radiation excess could be explained in the framework of IC emission of primary CREs in clusters undergoing high accretion/merger phase. Instead, IC emission from both primary and secondary CREs accounts at most for a small fraction of the radiation excesses detected in the extreme-UV (except for the Coma cluster as reported by Bowyer et al.1999). Next, we calculate the SE after normalizing the magnetic field so that for a Coma-like cluster ^1/2~3 \muG. Our results indicate that the SE from secondary CREs reproduces several general properties of radio halos, including the recently found P_1.4GHz vs T relation, the morphology and polarization of the emitting region and, to some extent, the spectral index. Moreover, SE from primary CREs turns out sufficient to power extended regions resembling radio relics observed at the outskirts of clusters. Again we find striking resemblance between morphology, polarization and spectral index of our synthetic maps and those reported in the literature.Comment: emulateapj, 27 pages, 10 figures, 5 tables; ApJ in pres

    Far-infrared Properties of Type 1 Quasars

    Get PDF
    We use the Spitzer Space Telescope Enhanced Imaging Products and the Spitzer Archival Far-InfraRed Extragalactic Survey to study the spectral energy distributions (SEDs) of spectroscopically confirmed type 1 quasars selected from the Sloan Digital Sky Survey (SDSS). By combining the Spitzer and SDSS data with the Two Micron All Sky Survey, we are able to construct a statistically robust rest-frame 0.1-100 μm type 1 quasar template. We find that the quasar population is well-described by a single power-law SED at wavelengths less than 20 μm, in good agreement with previous work. However, at longer wavelengths, we find a significant excess in infrared luminosity above an extrapolated power-law, along with significant object-to-object dispersion in the SED. The mean excess reaches a maximum of 0.8 dex at rest-frame wavelengths near 100 μm
    corecore