189 research outputs found

    The development of ovary in quail’s embryo

    Get PDF
    The experiment was conducted to study the development of ovary in quails’ embryos which were incubated for 4 to 17 days and incubated out for 1 day. The quails’ embryos or gonads were cut out and HE staining was carried out. The results showed that when embryo was hatched for 4 days, lots of primordial germ cells (PGCs) clustered in the region where gonad would be formed. On the 5th day of hatching, the gonad of the embryo began to be formed and exhibited the feature of ovary or testis. On the 7th hatching day, the right ovary began to degenerate, just a few PGCs began to differentiate into oogonia. On the 10th day, there were many oogonia in the ovary, some of which were surrounded by some other cells distributed like circles. On the 11th day, there were more oogonia, the skinniness became thicker while the medulla was thinner. On the 13th day, the division between skinniness and medulla was obvious and the ovary formed the early original ovum. On the 14th day, more original ovums were seen in the skinniness. On the 17th hatching day and on the 1st day of hatching out, the shape of ovary tended to be mature, also the ovum was clear and more; the medulla was full of vessels. On the 5th hatching day, gonad began to differentiate. On the 7th hatching day and later, thedifferentiation of gonad was obvious; the right ovary began to degenerate. On the 13th hatching day, early original ovum began to be formed in the skinniness of ovary. The results established groundwork for the research of the development of gonads of quail and other poultry.Key words: Quail, embryo, gonad, ovary

    Loss of Cytochrome P450 (CYP)1B1 Mitigates Hyperoxia Response in Adult Mouse Lung by Reprogramming Metabolism and Translation

    Get PDF
    Oxygen supplementation is life saving for premature infants and for COVID-19 patients but can induce long-term pulmonary injury by triggering inflammation, with xenobiotic-metabolizing CYP enzymes playing a critical role. Murine studies showed that CYP1B1 enhances, while CYP1A1 and CYP1A2 protect from, hyperoxic lung injury. In this study we tested the hypothesis that Cyp1b1-null mice would revert hyperoxia-induced transcriptomic changes observed in WT mice at the transcript and pathway level. Wild type (WT) C57BL/6J and Cyp1b1-null mice aged 8-10 weeks were maintained in room air (21%

    Nanopatterned indium tin oxide as a selective coating for solar thermal applications

    Get PDF
    Indium tin oxide (ITO) coatings have been proposed to reduce thermal emission losses for solar thermal applications. Unfortunately, ITO also has a large amount of free charge carriers (∼1 × 1020 per cm3), which absorb sunlight. To address this issue, we propose a nano-patterned ITO-coated quartz exhibiting both anti-reflectivity (to maximize solar transmission) and low emissivity (to minimize long wavelengths radiative losses). A record small-size nanosphere (∼60 nm) etch mask was prepared via double self-assembly, followed by dry etching and characterisation. In parallel, alternative nanopattern geometries were modelled using the Lumerical FDTD software to optimise short wavelength transmission without diminishing the inherently low emissivity of unetched ITO. It was found that an inverted moth's eye pattern (height = 250 nm and spacing = 80 nm) gave the best results at various solar concentrations (1 sun @ 100 °C, 10 suns @ 400 °C, and 100 suns @ 600 °C), resulting in ∼7% improvement in the solar weighted transmission as well as a similar boost in the overall efficiency factor for selectivity. It was concluded that if the proposed deposition/etching processes can be cost-effectively scaled in a continuous process, it would provide a net performance boost for most solar thermal technologies

    Branched chain α-ketoacid dehydrogenase kinase 111–130, a T cell epitope that induces both autoimmune myocarditis and hepatitis in A/J mice

    Get PDF
    Introduction: Organ-specific autoimmune diseases are believed to result from immune responses generated against self-antigens specific to each organ. However, when such responses target antigens expressed promiscuously in multiple tissues, then the immune-mediated damage may be wide spread. Methods: In this report, we describe a mitochondrial protein, branched chain α-ketoacid dehydrogenase kinase (BCKDk) that can act as a target autoantigen in the development of autoimmune inflammatory reactions in both heart and liver. Results: We demonstrate that BCKDk protein contains at least nine immunodominant epitopes, three of which, BCKDk 71–90, BCKDk 111–130 and BCKDk 141–160, were found to induce varying degrees of myocarditis in immunized mice. One of these, BCKDk 111–130, could also induce hepatitis without affecting lungs, kidneys, skeletal muscles, and brain. In immunogenicity testing, all three peptides induced antigen-specific T cell responses, as verified by proliferation assay and/or major histocompatibility complex class II/IAk dextramer staining. Finally, the disease-inducing abilities of BCKDk peptides were correlated with the production of interferon-γ, and the activated T cells could transfer disease to naive recipients. Conclusions: The disease induced by BCKDk peptides could serve as a useful model to study the autoimmune events of inflammatory heart and liver diseases

    Down-Regulation of AP-4 Inhibits Proliferation, Induces Cell Cycle Arrest and Promotes Apoptosis in Human Gastric Cancer Cells

    Get PDF
    BACKGROUND: AP-4 belongs to the basic helix-loop-helix leucine-zipper subgroup; it controls target gene expression, regulates growth, development and cell apoptosis and has been implicated in tumorigenesis. Our previous studies indicated that AP-4 was frequently overexpressed in gastric cancers and may be associated with the poor prognosis. The purpose of this study is to examine whether silencing of AP-4 can alter biological characteristics of gastric cancer cells. METHODS: Two specific siRNAs targeting AP-4 were designed, synthesized, and transfected into gastric cancer cell lines and human normal mucosa cells. AP-4 expression was measured with real-time quantitative PCR and Western blot. Cell proliferation and chemo-sensitivity were detected by CCK-8 assay. Cell cycle assay and apoptosis assay were performed by flow cytometer, and relative expression of cell cycle regulators were detected by real-time quantitative PCR and Western blot, expression of the factors involved in the apoptosis pathway were examined in mRNA and protein level. RESULTS: The expression of AP-4 was silenced by the siRNAs transfection and the effects of AP-4 knockdown lasted 24 to 96 hrs. The siRNA-mediated silencing of AP-4 suppressed the cellular proliferation, induced apoptosis and sensitized cancer cells to anticancer drugs. In addition, the expression level of p21, p53 and Caspase-9 were increased when AP-4 was knockdown, but the expression of cyclin D1, Bcl-2 and Bcl-x(L) was inhibited. It didn't induce cell cycle arrest when AP-4 was knockdown in p53 defect gastric cancer cell line Kato-III. CONCLUSIONS: These results illustrated that gene silencing of AP-4 can efficiently inhibited cell proliferation, triggered apoptosis and sensitized cancer cells to anticancer drugs in vitro, suggesting that AP-4 siRNAs mediated silencing has a potential value in the treatment of human gastric cancer
    corecore