377 research outputs found

    Community Resistance and Discretionary Strategies in Planning Sustainable Development: The Case of Colorado Cities

    Get PDF
    How bureaucrats exercise administrative discretion is an enduring question in urban planning and democratic governance. Conflicts between urban planners’ professional recommendations and community stakeholders’ demands play out especially in the sustainable development context, where planners confront value conflicts between environmental, economic, and social goals. This article investigates the sources of community resistance to sustainable development and the discretionary strategies planners employ to persuade communities towards a more sustainable future. Utilizing a descriptive case study design, we examine four Colorado cities experiencing growth and community resistance to sustainable development practices. We find that while planners face community resistance from a multitude of sources, including developer pressures, NIMBYism and density concerns, and distrust of the planning profession, planners also work within their discretionary space using interdepartmental coordination, communication and outreach, data and evidence, rule changes, and neutral stewardship to encourage sustainable development. Implications for planning practice and future research are discussed

    Lipid and fatty acid turnover of the pteropods Limacina helicina, L. retroversa and Clione limacina from Svalbard waters

    Get PDF
    This study aimed at a better understanding of the fatty acid (FA) turnover in Arctic pteropods. Thecosome pteropods, i.e. Limacina helicina (juveniles and adults) and L. retroversa (adults), were collected in summer/autumn in Kongsfjorden and Isfjorden (Svalbard, 78° N) and, for the first time, successfully fed with 13 C-labeled algae for 6 d. The gymnosome pteropod Clione limacina was sampled in summer in northern Svalbard and fed with 13 C-labeled L. retroversa for 23 d. FA compositions were determined by gas chromatography, and 13 C enrichment of FAs was analyzed by compound-specific isotope analysis. Among the thecosomes, maximum lipid turnover occurred in L. retroversa adults (1.3% d −1 ). L. helicina adults and juveniles showed lower lipid turnover rates (0.1 and 0.2% d −1 , respectively). The thecosomes exhibited the ability to assimilate omega-3 FAs (up to 8.0% d −1 ). The lipid turnover rate of C. limacina averaged at only 0.07% d −1 . However, C. limacina clearly showed the unusual capacity of de novo synthesis of odd-chain FAs (up to 1.2% d −1 ). Lipid turnover rates of pteropods were lower than those reported for Arctic copepods. However, pteropods may play a substantial role in the transfer of lipids to higher trophic levels, especially in autumn, when copepods have descended from the upper layers of the water column. The pteropods also showed the capacity to channel particular compounds such as omega-3 and odd-chain FAs, and therefore could be important for the functional diversity of the Arctic zooplankton community

    Effect of Thermal Treatment on Corrosion Behavior of AISI 316L Stainless Steel Manufactured by Laser Powder Bed Fusion

    Get PDF
    The effect of post-processing heat treatment on the corrosion behavior of AISI 316L stainless steel manufactured by laser powder bed fusion (L-PBF) is investigated in this work. Produced stainless steel was heat treated in a broad temperature range (from 200 °C to 1100 °C) in order to evaluate the electrochemical behavior and morphology of corrosion. The electrochemical behavior was investigated by potentiodynamic and galvanostatic polarization in a neutral and acidic (pH 1.8) 3.5% NaCl solution. The microstructure modification after heat treatment and the morphology of attack of corroded samples were evaluated by optical and scanning electron microscopy. The fine cellular/columnar microstructure typically observed for additive-manufactured stainless steel evolves into a fine equiaxed austenitic structure after thermal treatment at high temperatures (above 800 °C). The post-processing thermal treatment does not negatively affect the electrochemical behavior of additive-manufactured stainless steel even after prolonged heat treatment at 1100 °C for 8 h and 24 h. This indicates that the excellent barrier properties of the native oxide film are retained after heat treatment

    You are not always what you eat : fatty acid bioconversion and lipid homeostasis in the larvae of the sand mason worm Lanice conchilega

    Get PDF
    The meroplanktonic larvae of benthic organisms are an important seasonal component of the zooplankton in temperate coastal waters. The larvae of the reef-building polychaete Lanice conchilega contribute up to 15% of the summer zooplankton biomass in the North Sea. Despite their importance for reef maintenance (which positively affects the benthic community), little is known about the trophic ecology of this meroplanktonic larva. Qualitative and quantitative estimates of carbon (C) transfer between trophic levels and of fatty acid (FA) specific assimilation, biosynthesis, and bioconversion can be obtained by compound-specific stable isotope analysis of FA. The present work tested the hypothesis that the concept of fatty acid trophic markers (FATM), widely used for studies on holoplankton with intermediate to high lipid contents, is also applicable to lipid-poor organisms such as meroplanktonic larvae. The incorporation of isotopically-enriched dietary C by L. conchilega larvae was traced, and lipid assimilation did not follow FA-specific relative availabilities in the diet. Furthermore, FAs that were unavailable in the diet, such as 22:5(n-3), were recorded in L. conchilega, suggesting their bioconversion by the larvae. The results indicate that L. conchilega larvae preferentially assimilate certain FAs and regulate their FA composition (lipid homeostasis) independently of that of their diet. Their quasi-homeostatic response to dietary FA availability could imply that the concept of FATM has limited application in lipid-poor organisms such as L. conchilega larvae

    A multi-trophic marker approach reveals high feeding plasticity in Barents Sea under-ice fauna

    Get PDF
    Microalgae growing within and attached to the bottom of Arctic sea ice (sympagic algae) can serve as a nutritious food resource for animals inhabiting the sea-ice water interface (under-ice fauna), particularly during the bottom ice-algal bloom in spring. As a consequence, under-ice fauna is likely impacted by sea-ice decline and changes in ice-algal primary production. To investigate this, samples of pelagic (=PPOM) and ice-associated particulate organic matter (=IPOM) and the iceassociated amphipods Apherusa glacialis and Eusirus holmii, and polar cod (Boreogadus saida), collected below ridged sea ice at two locations with pronounced differences in productivity in the northern Barents Sea during May 2021, were assessed for their trophic marker content. Specifically, we investigated the composition of diatom- and dinoflagellate-produced fatty acids (FAs), pelagic and sympagic highly branched isoprenoid (HBI) lipids as well as sterols to determine the animals’ dietary preferences and trophic association to the sea-ice habitat during spring. Relative proportions of FAs differed strongly between PPOM and IPOM, indicating differences in species composition and degradation state between pelagic and sympagic habitats, respectively. FA signatures and sterol content of the consumers largely resembled known diet compositions with a strong reliance on diatom-derived carbon in A. glacialis, a higher degree of carnivory in E. holmii and evidence of Calanus-feeding in polar cod. Sympagic HBIs were detected at either low concentrations or not at all, in both producers and consumers, likely as a result of the very low abundance of their source diatoms. Pronounced trophic marker variability in A. glacialis collected at the highly productive shelf slope station versus the less productive central Arctic Basin station suggests a surprisingly high flexibility in carbon-source composition with a stronger reliance on pelagic food when available versus a higher importance of ice algal carbon when pelagic production is low. Nevertheless and despite the general lack (below detection limit) of sympagic HBIs in our dataset, high ice-algal biomass and elevated proportions of polyunsaturated FAs in IPOM compared to other seasons indicate that ice algae constitute a valuable nutritional carbon source as alternative to pelagic carbon during spring

    Carbon flow through the pelagic food web in southern Chilean Patagonia: relevance of Euphausia vallentini as a key species

    Get PDF
    * Plant traits that enhance the attraction of the natural enemies of their herbivores have been postulated to function as an ‘indirect defence’. An important underlying assumption is that this enhanced attraction results in increased plant fitness due to reduced herbivory. This assumption has been rarely tested. * We investigated whether there are fitness consequences for the charlock mustard Sinapis arvensis, a short-lived outcrossing annual weedy plant, when exposed to groups of large cabbage white (Pieris brassicae) caterpillars parasitized by either one of two wasp species, Hyposoter ebeninus and Cotesia glomerata, that allow the host to grow during parasitism. Hyposoter ebeninus is solitary and greatly reduces host growth compared with healthy caterpillars, whereas C. glomerata is gregarious and allows the host to grow approximately as large as unparasitized caterpillars. Both healthy and parasitized P. brassicae caterpillars initially feed on the foliage, but later stages preferentially consume the flowers. * In a garden experiment, plants damaged by parasitized caterpillars produced more seeds than conspecific plants damaged by unparasitized caterpillars. Reproductive potential (germination success multiplied by total seed number) was similar for plants that were not exposed to herbivory and those that were damaged by parasitized caterpillars and lower for plants that were damaged by healthy unparasitized caterpillars. However, these quantitative seed traits negatively correlated with the qualitative seed traits, individual seed size and germination success, suggesting a trade-off between these two types of traits. * We show that parasitism of insect herbivores that feed on reproductive plant tissues may have positive fitness consequences for S. arvensis. The extent to which plant fitness may benefit depends on parasitoid lifestyle (solitary or gregarious), which is correlated with the amount of damage inflicted on these tissues by the parasitized host

    Stellar Rotation in Young Clusters. II. Evolution of Stellar Rotation and Surface Helium Abundance

    Get PDF
    We derive the effective temperatures and gravities of 461 OB stars in 19 young clusters by fitting the H-gamma profile in their spectra. We use synthetic model profiles for rotating stars to develop a method to estimate the polar gravity for these stars, which we argue is a useful indicator of their evolutionary status. We combine these results with projected rotational velocity measurements obtained in a previous paper on these same open clusters. We find that the more massive B-stars experience a spin down as predicted by the theories for the evolution of rotating stars. Furthermore, we find that the members of binary stars also experience a marked spin down with advanced evolutionary state due to tidal interactions. We also derive non-LTE-corrected helium abundances for most of the sample by fitting the He I 4026, 4387, 4471 lines. A large number of helium peculiar stars are found among cooler stars with Teff < 23000 K. The analysis of the high mass stars (8.5 solar masses < M < 16 solar masses) shows that the helium enrichment process progresses through the main sequence (MS) phase and is greater among the faster rotators. This discovery supports the theoretical claim that rotationally induced internal mixing is the main cause of surface chemical anomalies that appear during the MS phase. The lower mass stars appear to have slower rotation rates among the low gravity objects, and they have a large proportion of helium peculiar stars. We suggest that both properties are due to their youth. The low gravity stars are probably pre-main sequence objects that will spin up as they contract. These young objects very likely host a remnant magnetic field from their natal cloud, and these strong fields sculpt out surface regions with unusual chemical abundances.Comment: 50 pages 18 figures, accepted by Ap

    Winter Carnivory and Diapause Counteract the Reliance on Ice Algae by Barents Sea Zooplankton

    Get PDF
    The Barents Sea is a hotspot for environmental change due to its rapid warming, and information on dietary preferences of zooplankton is crucial to better understand the impacts of these changes on food-web dynamics. We combined lipid-based trophic marker approaches, namely analysis of fatty acids (FAs), highly branched isoprenoids (HBIs) and sterols, to compare late summer (August) and early winter (November/December) feeding of key Barents Sea zooplankters; the copepods Calanus glacialis, C. hyperboreus and C. finmarchicus and the amphipods Themisto libellula and T. abyssorum. Based on FAs, copepods showed a stronger reliance on a diatom-based diet. Phytosterols, produced mainly by diatoms, declined from summer to winter in C. glacialis and C. hyperboreus, indicating the strong direct linkage of their feeding to primary production. By contrast, C. finmarchicus showed evidence of year-round feeding, indicated by the higher winter carnivory FA ratios of 18:1(n-9)/18:1(n-7) than its larger congeners. This, plus differences in seasonal lipid dynamics, suggests varied overwintering strategies among the copepods; namely diapause in C. glacialis and C. hyperboreus and continued feeding activity in C. finmarchicus. Based on the absence of sea ice algae-associated HBIs (IP25 and IPSO25) in the three copepod species during both seasons, their carbon sources were likely primarily of pelagic origin. In both amphipods, increased FA carnivory ratios during winter indicated that they relied strongly on heterotrophic prey during the polar night. Both amphipod species contained sea ice algae-derived HBIs, present in broadly similar concentrations between species and seasons. Our results indicate that sea ice-derived carbon forms a supplementary food rather than a crucial dietary component for these two amphipod species in summer and winter, with carnivory potentially providing them with a degree of resilience to the rapid decline in Barents Sea (winter) sea-ice extent and thickness. The weak trophic link of both zooplankton taxa to sea ice-derived carbon in our study likely reflects the low abundance and quality of ice-associated carbon during late summer and the inaccessibility of algae trapped inside the ice during winter.</jats:p

    Weakness of investment in Portugal : what role do credit supply and fiscal consolidation shocks play?

    Get PDF
    In order to illustrate how tightened financial conditions have hampered investment in Portugal, we estimate a Factor Augmented Vector AutoRegressive model (FAVAR) with Bayesian techniques. We extract a financial conditions indicator and identify credit supply, demand and fiscal consolidation shocks with sign restrictions. We show that changes in financial conditions, which result from both credit supply shocks and fiscal shocks, have a protracted impact, especially on bank loans and bank lending spreads. We then develop a scenario in which we the tightening in financial condi- tions in the wake of the sovereign crisis is attributed to credit supply shocks. The analysis suggests that, due to the crisis, by the end of 2017, Portuguese GDP, corpo- rate investment and corporate loans were reduced by respectively 6, 22 and 20 p.p., public investment by 1 p.p. of GDP and bank lending spreads widened by 80 b.p.info:eu-repo/semantics/publishedVersio
    • …
    corecore