5 research outputs found
Positional Cloning of “Lisch-like”, a Candidate Modifier of Susceptibility to Type 2 Diabetes in Mice
In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes
Optimal Experimental Design for Systems and Synthetic Biology Using AMIGO2
19 pages, 6 figuresDynamic modeling in systems and synthetic biology is still quite a challenge—the complex nature of the interactions results in nonlinear models, which include unknown parameters (or functions). Ideally, time-series data support the estimation of model unknowns through data fitting. Goodness-of-fit measures would lead to the best model among a set of candidates. However, even when state-of-the-art measuring techniques allow for an unprecedented amount of data, not all data suit dynamic modeling.
Model-based optimal experimental design (OED) is intended to improve model predictive capabilities. OED can be used to define the set of experiments that would (a) identify the best model or (b) improve the identifiability of unknown parameters. In this chapter, we present a detailed practical procedure to compute optimal experiments using the AMIGO2 toolboxThe authors acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities and the European Union FEDER (project grant RTI2018-093744-B-C33). This work was also supported by a Royal Society of Edinburgh-MoST grant, EPSRC grant EP/R035350/1 and EP/S001921/1 to Dr. Menolascina, and the EPSRC grant EP/P017134/1-CONDSYC to Dr. BandieraN
