311 research outputs found

    Kinematics of CO2 fluxes in the tropical Atlantic ocean during the 1983 northern summer

    Get PDF
    CO2 evasion within the Atlantic equatorial belt (5°N-5°S) increases from the East to the West (Andrié et al., 1986). Many factors contribute the variations of pCO2 in the equatorial surface waters. To assess their relative importance, a kinematic box model is developed. A 2° x 2° box whose depth is defined by the 24.90 °/°° isopcynal level flows westward from 4°W to 38°W within the Equator-2°S band with the south equatorial current. Time (zonal) evolution of nitrate, total CO2, total alkalinity and mass, and of the corresponding water pCO2, are simulated taking into account advection, meridional divergence, diffusion, biological activity and gas exchange. Initial and boundary conditions are taken from the FOCAL 4 (July-August 1983) data se

    Effects of upwelling duration and phytoplankton growth regime on dissolved-oxygen levels in an idealized Iberian Peninsula upwelling system

    Get PDF
    Abstract. We apply a coupled modelling system composed of a state-of-the-art hydrodynamical model and a low-complexity biogeochemical model to an idealized Iberian Peninsula upwelling system to identify the main drivers of dissolved-oxygen variability and to study its response to changes in the duration of the upwelling season and in the phytoplankton growth regime. We find that the export of oxygenated waters by upwelling front turbulence is a major sink for nearshore dissolved oxygen. In our simulations of summer upwelling, when the phytoplankton population is generally dominated by diatoms whose growth is boosted by nutrient input, net primary production and air–sea exchange compensate dissolved-oxygen depletion by offshore export over the shelf. A shorter upwelling duration causes a relaxation of upwelling winds and a decrease in offshore export, resulting in a slight increase of net dissolved-oxygen enrichment in the coastal region as compared to longer upwelling durations. When phytoplankton is dominated by groups less sensitive to nutrient inputs, growth rates decrease, and the coastal region becomes net heterotrophic. Together with the physical sink, this lowers the net oxygenation rate of coastal waters, which remains positive only because of air–sea exchange. These findings help in disentangling the physical and biogeochemical controls of dissolved oxygen in upwelling systems and, together with projections of increased duration of upwelling seasons and phytoplankton community changes, suggest that the Iberian coastal upwelling region may become more vulnerable to hypoxia and deoxygenation. This research has been supported by the IDEX UNITI – University of Toulouse (TEASAO IDEX UNITI – Univer- sity of Toulouse)

    Sensitivity of tensor analyzing power in the process d+p→d+Xd+p\to d+X to the longitudinal isoscalar form factor of the Roper resonance electroexcitation

    Get PDF
    The tensor analyzing power of the process d+p→d+Xd + p \to d + X, for forward deuteron scattering in the momentum interval 3.7 to 9 GeV/c, is studied in the framework of ω\omega exchange in an algebraic collective model for the electroexcitation of nucleon resonances. We point out a special sensitivity of the tensor analyzing power to the isoscalar longitudinal form factor of the Roper resonance excitation. The main argument is that the S11(1535)S_{11}(1535), D13(1520)D_{13}(1520) and S11(1650)S_{11}(1650) resonances have only isovector longitudinal form factors. It is the longitudinal form factor of the Roper excitation, which plays an important role in the t−t-dependence of the tensor analyzing power. We discuss possible evidence of swelling of hadrons with increasing excitation energy.Comment: 12 pages, 10 figure

    Generalized parton distributions in the deuteron

    Get PDF
    We introduce generalized quark and gluon distributions in the deuteron, which can be measured in exclusive processes like deeply virtual Compton scattering and meson electroproduction. We discuss the basic properties of these distributions, and point out how they probe the interplay of nucleon and parton degrees of freedom in the deuteron wave function

    Reactions of an aluminum(I) reagent with 1,2-, 1,3-, and 1,5-dienes: dearomatization, reversibility, and a pericyclic mechanism

    Get PDF
    Addition of the aluminum(I) reagent [{(ArNCMe)2CH}Al] (Ar = 2,6-di-iso-propylphenyl) to a series of cyclic and acyclic 1,2-, 1,3-, and 1,5-dienes is reported. In the case of 1,3-dienes, the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene-containing products. This mechanism has been examined by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4 + 1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4 + 1) cycloaddition includes styene, 1,1-diphenylethylene, and anthracene. In these cases, the diene motif is either in part, or entirely, contained within an aromatic ring and reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2-cyclononadiene or 1,5-cyclooctadiene, complementary reactivity is observed; the orthogonal nature of the C═C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavor a (4 + 1) cycloaddition. Rather, reaction pathways are determined by an initial (2 + 1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C═C π-bond, leading to complex organometallic products that incorporate fused hydrocarbon rings

    A precise measurement of the deuteron elastic structure function A(Q^2)

    Get PDF
    The A(Q^2) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q^2 between 0.66 and 1.80 (GeV/c)^2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 degrees. These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents.Comment: 3 LaTeX pages plus 2 PS figure

    Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    Get PDF
    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several topics, one figure has been had, extraction of form factors use AQ interpolation in our Q2 range onl

    Point-Form Analysis of Elastic Deuteron Form Factors

    Full text link
    Point-form relativistic quantum mechanics is applied to elastic electron-deuteron scattering. The deuteron is modeled using relativistic interactions that are scattering-equivalent to the nonrelativistic Argonne v18v_{18} and Reid '93 interactions. A point-form spectator approximation (PFSA) is introduced to define a conserved covariant current in terms of single-nucleon form factors. The PFSA is shown to provide an accurate description of data up to momentum transfers of 0.5 GeV2{\rm GeV}^2, but falls below the data at higher momentum transfers. Results are sensitive to the nucleon form factor parameterization chosen, particularly to the neutron electric form factor.Comment: RevTex, 31 pages, 1 table, 13 figure

    The HPS electromagnetic calorimeter

    Get PDF
    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier

    Deeply Virtual Compton Scattering off the neutron

    Full text link
    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e⃗,eâ€ČÎł)X({\vec e},e'\gamma)X cross section measured at Q2Q^2=1.9 GeV2^2 and xBx_B=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to EqE_q, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.Comment: Published in Phys. Rev. Let
    • 

    corecore