21 research outputs found

    Characterization of the Secreted Acid Phosphatase SapS Reveals a Novel Virulence Factor of Staphylococcus aureus That Contributes to Survival and Virulence in Mice

    Get PDF
    Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system’s response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 sapS mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model. The SA564 sapS mutant elicits a lower inflammatory response in mice than the wild-type strain, while S. aureus cells harbouring a functional sapS induce a chemokine response that favours the recruitment of neutrophils to the infection site. Our in vitro and quantitative transcript analysis show that SapS has an effect on S. aureus capacity to adapt to oxidative stress during growth. SapS is also involved in S. aureus biofilm formation. Thus, this study shows for the first time that SapS plays a significant role during infection, most likely through inhibiting a variety of the host’s defence mechanisms

    Synthesis, antitubercular activity and mechanism of resistance of highly effective thiacetazone analogues

    Get PDF
    Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61) or HadC (at Val85, Lys157 or Thr123), which are components of the bhydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors

    Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter

    Get PDF
    Plasmodium falciparum employs antigenic variation to evade the human immune response by switching the expression of different variant surface antigens encoded by the var gene family. Epigenetic mechanisms including histone modifications and sub-nuclear compartmentalization contribute to transcriptional regulation in the malaria parasite, in particular to control antigenic variation. Another mechanism of epigenetic control is the exchange of canonical histones with alternative variants to generate functionally specialized chromatin domains. Here we demonstrate that the alternative histone PfH2A.Z is associated with the epigenetic regulation of var genes. In many eukaryotic organisms the histone variant H2A.Z mediates an open chromatin structure at promoters and facilitates diverse levels of regulation, including transcriptional activation. Throughout the asexual, intraerythrocytic lifecycle of P. falciparum we found that the P. falciparum ortholog of H2A.Z (PfH2A.Z) colocalizes with histone modifications that are characteristic of transcriptionally-permissive euchromatin, but not with markers of heterochromatin. Consistent with this finding, antibodies to PfH2A.Z co-precipitate the permissive modification H3K4me3. By chromatin-immunoprecipitation we show that PfH2A.Z is enriched in nucleosomes around the transcription start site (TSS) in both transcriptionally active and silent stage-specific genes. In var genes, however, PfH2A.Z is enriched at the TSS only during active transcription in ring stage parasites. Thus, in contrast to other genes, temporal var gene regulation involves histone variant exchange at promoter nucleosomes. Sir2 histone deacetylases are important for var gene silencing and their yeast ortholog antagonises H2A.Z function in subtelomeric yeast genes. In immature P. falciparum parasites lacking Sir2A or Sir2B high var transcription levels correlate with enrichment of PfH2A.Z at the TSS. As Sir2A knock out parasites mature the var genes are silenced, but PfH2A.Z remains enriched at the TSS of var genes; in contrast, PfH2A.Z is lost from the TSS of de-repressed var genes in mature Sir2B knock out parasites. This result indicates that PfH2A.Z occupancy at the active var promoter is antagonized by PfSir2A during the intraerythrocytic life cycle. We conclude that PfH2A.Z contributes to the nucleosome architecture at promoters and is regulated dynamically in active var genes

    Interactions of FGFs with target cells.

    No full text
    International audienceGrowth factors play a key role in cellular communication, a necessary step for the development of pluricellular organisms. The fibroblast growth factors (FGF) are among these polypeptides and have seven known members: FGF 1 to FGF 7 which are also known as acidic FGF, basic FGF, translation products of oncogenes hst, int 2, FGF 5, FGF 6 and FGF 7 or keratinocyte growth factor (KGF) respectively [1]. The best known and the most abundant in normal adult tissues are acidic and basic FGFs, or FGF 1 and 2 respectively, which have been subjected to extensive studies both in vitro and in vivo. These two factors have almost ubiquitous distribution and a wide spectrum of biological activity including action on cellular proliferation and differentiation, as well as neurotrophic and angiogenic properties [1]. These different activities are induced by triggering specific receptors present at the surface of the target cell. Following this interaction, the FGF-receptor complexes are internalized and activate intracellular pathways. An important effort of investigations has been produced to characterize these receptors and intracellular pathways. It is the purpose of this review to present this work which will focus on FGFs 1 and 2. The existence of two classes of interactions has been reported as early as 1987 [52, 53, 54] suggesting the presence of high and low affinity receptors for FGFs

    Internalization and limited processing of basic fibroblast growth factor on Chinese hamster lung fibroblasts.

    No full text
    International audienceUsing either acidic (pH 2.5) or trypsic treatments, we demonstrated that 125I-labeled basic Fibroblast Growth Factor (125I-bFGF) was submitted to an internalization process on responsive Chinese hamster lung fibroblasts (CCL39) at 37 degrees C. Various experiments based on the measurement of cell-associated radioactivity, as well as on research of degradated products of 125I-bFGF in cellular supernatants, showed that most of the internalized radioactivity remained intracellularly located after up to 5 hr of incubation. Analyses of this radioactivity by NaDodSO4-PAGE revealed the presence of labeled peptides issued from the limited processing of the native 125I-bFGF form (17 kD) and whose molecular weights were estimated to be 9 and 6 kD. Kinetic experiments indicated that proteolysis of the 125I-bFGF began early on incubation (less than 30 min) and led to a prolonged preservation of the 9- and 6-kD peptides which were still detectable after 13 hr of incubation. Preincubation of the cells with different lysosomotropic agents completely inhibited the proteolysis, indicating that this event occurred probably in an intracellular acidic compartment. Two enzyme inhibitors, leupeptin and N-alpha-tosyl-L-lysine chloromethyl ketone (TLCK), were also shown to interfere with the formation of both 9- and 6-kD peptides, thus suggesting a way to control the appearance of these fragments, and hence to determine their potential intracellular role

    Visualization of several binding sites for basic fibroblast growth factor (FGF-2) on fibroblasts by photoaffinity labeling: evidence for intracellular complexes.

    No full text
    International audienceThe internalization of basic fibroblast growth factor (FGF-2) was studied in Chinese hamster lung fibroblasts (CCL39). Recombinant FGF-2 was derivatized with a photoactivable agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), iodinated, and used to visualize intracellular FGF-2-affinity-labeled molecules after internalization at 37 degrees C. Iodinated HSAB-FGF-2 maintained the properties of natural FGF-2 such as affinity for heparin, binding to Bek and Fig receptors, interaction with high- and low-affinity binding sites, and reinitiating of DNA synthesis in CCL39 cells. Affinity-labeling experiments at 4 degrees C with 125I-HSAB-FGF-2 led to the detection of several FGF-cell surface complexes with apparent molecular mass of 80, 100, 125, 150, 170-180, 220, 260, and about 320 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), whereas two specific bands at 80 and 130-160 kDa were obtained using the homobifunctional cross-linking reagent, disuccinimidyl suberate. When the cells, preincubated with 125I-HSAB-FGF-2 at 4 degrees C and then washed, were shifted to 37 degrees C, irradiation of the internalized labeled FGF-2 led to detection of a similar but fainted profile with one major specific band at 80 kDa. Heparitinase II treatment of the cells reduced binding of 125I-HSAB-FGF-2 to its cell surface sites by 80% and internalization by 55%, indicating the involvement of heparan sulfate proteoglycans in these processes. Among the heparitinase-sensitive bands was the 80-kDa complex

    Internalization and limited processing of basic fibroblast growth factor on Chinese hamster lung fibroblasts.

    No full text
    International audienceUsing either acidic (pH 2.5) or trypsic treatments, we demonstrated that 125I-labeled basic Fibroblast Growth Factor (125I-bFGF) was submitted to an internalization process on responsive Chinese hamster lung fibroblasts (CCL39) at 37 degrees C. Various experiments based on the measurement of cell-associated radioactivity, as well as on research of degradated products of 125I-bFGF in cellular supernatants, showed that most of the internalized radioactivity remained intracellularly located after up to 5 hr of incubation. Analyses of this radioactivity by NaDodSO4-PAGE revealed the presence of labeled peptides issued from the limited processing of the native 125I-bFGF form (17 kD) and whose molecular weights were estimated to be 9 and 6 kD. Kinetic experiments indicated that proteolysis of the 125I-bFGF began early on incubation (less than 30 min) and led to a prolonged preservation of the 9- and 6-kD peptides which were still detectable after 13 hr of incubation. Preincubation of the cells with different lysosomotropic agents completely inhibited the proteolysis, indicating that this event occurred probably in an intracellular acidic compartment. Two enzyme inhibitors, leupeptin and N-alpha-tosyl-L-lysine chloromethyl ketone (TLCK), were also shown to interfere with the formation of both 9- and 6-kD peptides, thus suggesting a way to control the appearance of these fragments, and hence to determine their potential intracellular role

    Apoptotic effects of imidazo[1,2-a]pyrazine derivatives in the human Dami cell line.

    No full text
    International audiencecAMP-elevating agents like phosphodiesterase inhibitors and purines have been shown to induce apoptosis. In the present work we have studied the effects of imidazo[1,2-a]pyrazine derivatives with a purine-like structure: PAB13 (6-bromo-8-(methylamino)imidazo[1,2-a] pyrazine), PAB15 (6-bromo-8-(ethylamino)imidazo[1,2-a]pyrazine), PAB23 (3-bromo-8-(methylamino)imidazo[1,2-a]pyrazine) on the growth of the Dami cell line in comparison to that of adenosine. The growth effect of PAB13, PAB15 and PAB23 was investigated in relation to their phosphodiesterase-inhibitory action and their activity on purinoceptors. Inhibition in cell growth was up to 71.0%, 76.3% and 89.7% for PAB23, PAB13 and PAB15, respectively and 100% for adenosine. Cell viability was affected in a concentration-dependent manner by PAB13, PAB15 and adenosine, with a correlation between growth inhibition and cytotoxicity. These effects of imidazo[1,2-a]pyrazine derivatives were found to be unrelated to an action on purinoceptors, but rather appear quantitatively linked to their ability in inducing apoptosis through their cAMP-increasing and phosphodiesterase-inhibitory potency
    corecore