1,191 research outputs found
Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete
An experimental evaluation of crack propagation and post-cracking behavior in steel fiber reinforced concrete (SFRC) beams, using full-field displacements obtained from the digital image correlation technique is presented. Surface displacements and strains during the fracture test of notched SFRC beams with volume fractions (Vf) of steel fibers equal to 0.5 and 0.75% are analyzed. An analysis procedure for determining the crack opening width over the depth of the beam during crack propagation in the flexure test is presented. The crack opening width is established as a function of the crack tip opening displacement and the residual flexural strength of SFRC beams. The softening in the post-peak load response is associated with the rapid surface crack propagation for small increases in crack tip opening displacement. The load recovery in the flexural response of SFRC is associated with a hinge-type behavior in the beam. For the stress gradient produced by flexure, the hinge is established before load recovery is initiated. The resistance provided by the fibers to the opening of the hinge produces the load recovery in the flexural response
Theory of Spin-Conserving Excitation of the Center in Diamond
The negatively charged nitrogen-vacancy defect ( center) in diamond is
an important atomic-scale structure that can be used as a qubit in quantum
computing and as a marker in biomedical applications. Its usefulness relies on
the ability to optically excite electrons between well-defined gap states,
which requires clear and detailed understanding of the relevant states and
excitation processes. Here we show that by using hybrid
density-functional-theory calculations in a large supercell we can reproduce
the zero-phonon line and the Stokes and anti-Stokes shifts, yielding a complete
picture of the spin-conserving excitation of this defect.Comment: 4 pages, 2 figure
All-optical hyperpolarization of electron and nuclear spins in diamond
Low thermal polarization of nuclear spins is a primary sensitivity limitation
for nuclear magnetic resonance. Here we demonstrate optically pumped
(microwave-free) nuclear spin polarization of and
in -doped diamond.
polarization enhancements up to above thermal equilibrium are observed
in the paramagnetic system . Nuclear spin polarization is
shown to diffuse to bulk with NMR enhancements of at
room temperature and at , enabling a route to
microwave-free high-sensitivity NMR study of biological samples in ambient
conditions.Comment: 5 pages, 5 figure
Theoretical model of the dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide
Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point
defects in semiconductors is a key resource for both initializing nuclear
quantum memories and producing nuclear hyperpolarization. DNP is therefore an
important process in the field of quantum-information processing,
sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based
spintronics. DNP based on optical pumping of point defects has been
demonstrated by using the electron spin of nitrogen-vacancy (NV) center in
diamond, and more recently, by using divacancy and related defect spins in
hexagonal silicon carbide (SiC). Here, we describe a general model for these
optical DNP processes that allows the effects of many microscopic processes to
be integrated. Applying this theory, we gain a deeper insight into dynamic
nuclear spin polarization and the physics of diamond and SiC defects. Our
results are in good agreement with experimental observations and provide a
detailed and unified understanding. In particular, our findings show that the
defects' electron spin coherence times and excited state lifetimes are crucial
factors in the entire DNP process
Carbon antisite clusters in SiC: a possible pathway to the D_{II} center
The photoluminescence center D_{II} is a persistent intrinsic defect which is
common in all SiC polytypes. Its fingerprints are the characteristic phonon
replicas in luminescence spectra. We perform ab-initio calculations of
vibrational spectra for various defect complexes and find that carbon antisite
clusters exhibit vibrational modes in the frequency range of the D_{II}
spectrum. The clusters possess very high binding energies which guarantee their
thermal stability--a known feature of the D_{II} center. The di-carbon antisite
(C_{2})_{Si} (two carbon atoms sharing a silicon site) is an important building
block of these clusters.Comment: RevTeX 4, 6 pages, 3 figures Changes in version 2: Section headings,
footnote included in text, vibrational data now given for neutral
split-interstitial, extended discussion of the [(C_2)_Si]_2 defect incl.
figure Changes version 3: Correction of binding energy for 3rd and 4th carbon
atom at antisite; correction of typo
Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory
We carried out Heyd-Scuseria-Ernzerhof hybrid density functional theory plane
wave supercell calculations in wurtzite aluminum nitride in order to
characterize the geometry, formation energies, transition levels and hyperfine
tensors of the nitrogen split interstitial defect. The calculated hyperfine
tensors may provide useful fingerprint of this defect for electron paramagnetic
resonance measurement.Comment: 5 pages, 3 figure
The Principles of Social Order. Selected Essays of Lon L. Fuller, edited With an introduction by Kenneth I. Winston
The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields
Engineering chromium related single photon emitters in single crystal diamond
Color centers in diamond as single photon emitters, are leading candidates
for future quantum devices due to their room temperature operation and
photostability. The recently discovered chromium related centers are
particularly attractive since they possess narrow bandwidth emission and a very
short lifetime. In this paper we investigate the fabrication methodologies to
engineer these centers in monolithic diamond. We show that the emitters can be
successfully fabricated by ion implantation of chromium in conjunction with
oxygen or sulfur. Furthermore, our results indicate that the background
nitrogen concentration is an important parameter, which governs the probability
of success to generate these centers.Comment: 14 pages, 5 figure
- …
