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Abstract. Color centers in diamond, as single photon emitters, are leading
candidates for future quantum devices due to their room temperature operation
and photostability. The recently discovered chromium-related centers are
particularly attractive because they possess narrow bandwidth emission and a
very short lifetime. In this paper, we investigate the fabrication methodologies
for engineering these centers in monolithic diamond. We show that the emitters
can be successfully fabricated by ion implantation of chromium in conjunction
with oxygen or sulfur. Furthermore, our results indicate that the background
nitrogen concentration is an important parameter, which governs the probability
of success in generating these centers.

Developing novel solid state systems that can generate single photons on demand at room
temperature is a prime goal in the quantum information science community [1, 2]. Impurities
in diamond offer a unique advantage over other systems as some of them are optically active
and can be employed as true single photon sources [3]. The nitrogen vacancy (NV) center, for
example [4], has been the subject of intense research [4]–[7], particularly due to its optical spin
readout capabilities and its potential use as a high-sensitivity magnetic sensor [8, 9]. However,
the optical properties of this center are limited by a strong phonon coupling, resulting in broad
emission (∼100 nm) of which only 4% is concentrated in the zero phonon line (ZPL). This is a
significant drawback for many quantum optical applications including quantum key distribution,
quantum metrology and optical quantum computation.
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Alternative centers with narrower emission lines that are also more suitable for microcavity
integration are required. Nickel- and silicon-related emitters have been studied as plausible
candidates because some of the centers show narrow emission lines in the near infrared
(NIR) [10]–[13]. However, nickel centers such as NE8 are difficult to fabricate due to the
requirement of four nitrogen atoms to form a complex with the Ni impurity. Until recently
the silicon vacancy (SiV) has not been considered as a good candidate for single defect devices
due to a very high nonradiative decay term, limiting its quantum efficiency to only 5% [14].
Surprisingly, however, the recent fabrication of SiV in chemical vapor deposition (CVD)-
grown nanodiamonds formed on an iridium substrate demonstrated outstanding and unexpected
brightness and spectral properties [15]. These improvements are likely to spur substantial
research into the photophysics of the SiV center, in particular, fabricating centers with similar
brightness in monolithic diamond by ion implantation.

Recently, a new class of single photon emitters associated with chromium impurities in
diamond [16]–[18] was discovered. These centers show bright fluorescence in the NIR and
possess a short radiative lifetime. Moreover, the linear transition dipole both in absorption and
in emission [19] is considered ideal for three-dimensional orientation imaging and tracking with
various microscopy methods [20]–[22].

The chromium emitters were originally discovered during diamond growth on a sapphire
substrate. The Cr atoms that are present in the sapphire substrate were incorporated into the
growing crystal through gas phase diffusion [10]. However, to achieve the best intrinsic photo-
physical properties of optical centers, such as reduced inhomogeneous broadening and Fourier
transform-limited emission [23], emitters should be fabricated into single crystal diamonds [24].
Therefore, methods for creating optical centers with high efficiency in bulk material are of
paramount importance for quantum optical devices [25, 26]. Furthermore, for scalable quantum
device architectures and for integration with other optical structures, accurate positioning and
a high formation probability are required. These conditions have not yet been fulfilled for the
particular case of chromium centers. Above all, the role of other impurities in the formation
of the center remains poorly understood. A formation study of this center by conventional
ion implantation techniques is also required in order to assess the possible deterministic
fabrication pathways to engineer the centers in nanodiamonds sized below 50 nm. This would
have immediate applications in bio-sensing.

In this paper, we investigate the role of co-dopants, such as nitrogen and oxygen, in the
formation of chromium centers in diamond by ion implantation techniques. We perform a
range of co-implantations of various impurities together with Cr ions, to determine their effect
on the formation of single emitters [17]. We also consider the target material and show that
the background nitrogen level present natively inside the diamond is a crucial parameter. Our
present studies aim to provide a sound basis for further research into the fabrication of chromium
emitters and to gather important information regarding their atomistic structure. We envisage
that the results will encourage further experiments aimed to improve the formation yield of the
centers up to the desired level necessary for implementing deterministic devices based on Cr
single emitters in diamond [25].

The ion implantation of chromium, oxygen, silicon, boron, nitrogen and sulfur was
performed with a National Electrostatics Corporation 150 kV low-energy ion implanter at
the Australian National University. During implantation the single crystal diamond samples
(3 × 3 × 0.5 mm3) were affixed to a temperature-controllable nickel block with clamps.
All implantations were performed at room temperature in ultra-high-vacuum conditions
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Table 1. Implanted elements and the corresponding implantation energies and
projected ranges.

Implantation
Element energy (keV) Projected range (nm)

Chromium 50 25 ± 7
Oxygen 19.5 25 ± 8
Silicon 34 25 ± 7
Boron 13 25 ± 8
Sulfur 38 25 ± 7
Nitrogen 18 25 ± 8

Figure 1. SRIM simulation of the concentration profiles of the implanted ions.

(∼10−7 torr). The implantation ion energies for chromium and the co-implanted species were
all chosen to result in a projected range of 25 nm and are listed in table 1. This allows efficient
detection of the light emitted from the centers. Figure 1 shows the concentration profiles of the
implanted ions as determined with the Monte Carlo simulation code Stopping and Range of
Ions in Matter (SRIM; http://www.SRIM.org).

After implantation, the samples were annealed at 1000 ◦C in a forming gas ambient (95%
Ar–5% H2) for 2 h. This is a typical procedure to induce vacancy diffusion in diamond and
to repair damage caused by the implantation. Note that the annealing step applied after the
implantation is not sufficient to cause any diffusion of the implanted atoms (Cr, Si, B, O and N)
in the diamond lattice [27]–[30].

The samples were then optically characterized to identify chromium-related single
emitters. This was performed using a home-built confocal microscope with a Hanbury Brown
and Twiss (HBT) setup to gain information regarding the photon statistics of the centers. A fiber-
coupled continuous wave diode laser emitting at 682 nm was used for excitation. The diamond
sample was mounted on a piezo XYZ stage with 0.2 nm resolution, allowing 100 × 100 µm2

scans. The emitted light was collected using a high numerical aperture objective (NA = 0.9) and
coupled to a 62.5 µm core multimode fiber, which acts as an aperture. A 50 : 50 fiber-coupled
beam splitter guided the photons to two single photon counting detectors (APDs) and their
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Table 2. Summary of chromium-related ion implantations into type IIA CVD
([N]< 1 ppm, [B]< 0.05 ppm) diamond. Yield is the number of single chromium
emitters per implanted chromium ion.

Density of Cr centers
Diamond material Fluences (ions cm−2) Sample no. Yield (%) (centers cm−2)

1 × 1011 Cr + 1 × 1011 Si (1) 10−5 104

1 × 1013 Cr + 1 × 1013 Si (2) 10−7 104

1 × 1011 Cr (3) 10−5 104

1 × 1013 Cr (4) 10−7 104

1 × 1010 Cr + 1.5 × 1010 O (5) 10−3 105

Type IIA 2 × 1010 Cr + 3 × 1010 O (6) 5 × 10−4 105

[N] < 1 ppm 1 × 1011 Cr + 1.5 × 1011 O (7) 10−4 105

[B] < 0.05 ppm 1 × 1011 Cr + 5 × 1011 O (8) 10−4 105

1 × 1011 Cr + 2 × 1012 O (9) 10−4 105

1 × 1012 Cr + 1.5 × 1012O (10) 10−5 105

1 × 1013 Cr + 1.5 × 1013 O (11) 10−7 104

1 × 1011 Cr + 3 × 1011 S (12) 10−4 104

1 × 1011 Cr + 1 × 1011 B (13) 10−5 104

1 × 1011 Cr + 1 × 1012 B (14) 10−5 104

outputs were sent to the start and stop inputs of a time correlator card. All the measurements
were carried out at room temperature. Spectroscopy has been performed to determine the typical
Cr emission lines associated with a particular bright spot on the confocal map.

We first investigated the co-implantation of chromium with oxygen into type IIA CVD
([N]< 1 ppm, [B]< 0.05 ppm) samples. This was motivated by the fact that implantation of
oxygen into silicon increased the proportion of Er that was present in the optically active Er3+

state [31]–[33]. Although Cr and Er might appear chemically equivalent (incorporation into
lattice in 3+ charge state), their diffusivity, the nature of electronic transitions (3d versus 4f) and
their susceptibility to crystal fields are quite different, which may influence the formation rate
of chromium centers in diamond.

Our experiments based on co-implantation of chromium and oxygen or select other species
(Si, S and B) into diamond are summarized in table 2. Figure 2 shows the main experimental
results graphically. The yield is calculated by dividing the density of the observed centers by the
chromium ion fluence and is given in units of %.

Figures 3(a) and (b) show typical confocal maps recorded from samples 3 and 7,
respectively. It is clearly seen that more bright centers can be found on sample 7, which was
co-implanted with oxygen, rather than sample 3, which was implanted with chromium only.

Figure 4(a) shows a typical spectrum of the chromium-related center. The inset represents
the anti-bunching measurement recorded from the same emitter employing the HBT setup,
demonstrating that the center is a single photon emitter. Narrow bandwidth lines with full-width
at half-maximum (FWHM) ∼4 nm were routinely observed from the chromium-implanted
samples. The histogram of the ZPLs is shown in figure 4(b). Similar ZPLs were observed
in samples 1–14. The large distribution of ZPLs is most likely due to different local charge
densities in the proximity of each emitter.
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Figure 2. Various implantation routes employed to investigate the formation of
Cr-related centers in type IIA CVD ([N]< 1ppm, [B]< 0.05 ppm) diamond. The
number in brackets denotes the sample number, as shown in table 2. Yield is the
number of single chromium emitters per implanted chromium ion.

Figure 3. Confocal map recorded from a diamond sample implanted with
(a) chromium and oxygen (sample 7) and (b) chromium only (sample 3).
More single emitters are clearly observed at sample 7, which had chromium
co-implanted with oxygen.

In our earlier work on chromium-related emitters in CVD-grown nanodiamonds [16], the
emitters are formed through diffusion from the growth substrate and possess different properties
(e.g. a two-level system rather than a three-level). The incorporated atoms have enough energy
to diffuse and occupy the most stable atomic site within the nanodiamond crystal. In the present
work, the emitters are engineered in a bulk crystal by ion implantation. Ion implantation results
in an arbitrary position of the implanted atom, and the annealing sequence only heals the
implantation damage but does not cause any diffusion of the atoms. This may explain the
variation of wavelengths in the implanted samples.

Implantation of 1 × 1011 Cr cm−2 into type IIA CVD diamond (sample 3) yields on
average 1 optically active Cr center per 100 × 100 µm2 scan. This indicates a rather low
conversion probability of implanted Cr into optically active defects. Increasing the Cr fluence by
two orders of magnitude decreases the yield by two orders of magnitude (samples 3 and 4).
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Figure 4. (a) PL spectrum of a chromium-related emitter. The inset represents the
g(2)(τ ) function recorded from the same emitter demonstrating that the addressed
center is a single photon emitter. (b) Histogram of the ZPLs of chromium-related
emitters found in different samples.

This may indicate that residual implantation damage plays a role in limiting the yield of
the centers. The increased damage at higher fluences could further reduce the impurity
diffusivities [30] and/or reduce the probability of impurities attaining the required charge state.
Co-implantation of Cr and O increases the yield by an order of magnitude or more (samples
5–9), but again an increased fluence results in a reduced yield. The highest yield was obtained
for 1 × 1010 Cr + 1.5 × 1010 O ions cm−2 (sample 5). It is important to note that the chromium
centers were repeatedly fabricated in type IIA CVD ([N]< 1 ppm, [B]< 0.05 ppm) diamond but
could not be formed in other types of diamond substrates as discussed further below.

Both oxygen and sulfur increase the yield of optically active Cr centers (samples 5–12).
The ratio of chromium-related single emitters observed in the co-implantation of chromium
and oxygen/sulfur to those in other implantations was as high as 10 : 1. Since sulfur and
oxygen are located in the same column in the periodic table, they are expected to behave
similarly when introduced into the diamond lattice. Sulfur defects in diamond have been
investigated as potential donors to achieve n-type material. It is assumed that sulfur occupies
a substitutional lattice site in diamond [28]. Theoretical work also predicts that oxygen will
occupy a substitutional lattice site.

The general low formation probability of all implantation schedules studied is consistent
with an expectation that the Cr and oxygen (or sulfur) atoms must be in very close proximity
following the implantation process for the appropriate optically active charge state to form
during the subsequent annealing, especially because the diffusivities are expected to be very
low in the annealing regime used.

As noted earlier, the role of oxygen and sulfur in the formation of optically active Cr
centers in diamond may be similar to the role O plays in Er doping of silicon. In silicon, under
the processing conditions used, the diffusivity of oxygen is high enough that oxygen present
in the silicon bulk can combine with a proportion of the implanted Er to form the optically
active center. Co-implantation of erbium and oxygen into silicon greatly enhances the Er3+

emission [31]–[33]. Extended x-ray absorption fine structure measurements on Er- and O-doped
silicon have shown that Er is coordinated by four to six O atoms [31]. Direct bonding is therefore
important in forming the optically active center in this system.
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Co-implantation of silicon and chromium was performed to test the damage effect
associated with the implantation. Furthermore, silicon has a similar electronic configuration
as carbon and hence is not a donor or an acceptor in diamond. Si will only produce damage
and introduce more vacancies. This implantation procedure followed by the standard annealing
treatment did not enhance the number of Cr centers compared to the co-implantation of Cr and
O (samples 1 and 7). These results confirm that the role of oxygen/sulfur is related to a charge
transfer rather than assisting in the generation of vacancies.

To investigate the effect of p-doping, chromium and boron were co-implanted (samples
13 and 14). CrB pairs are speculated to be responsible for some optically active centers in
silicon when Cr is present; therefore, there is scientific interest in investigating this pair in
diamond [35, 36]. The results of these implants showed that only a limited number of chromium
emitters were formed, similar to the chromium only or chromium plus silicon co-implantation
schedules. When no donor is co-implanted, the charge state configuration could be aided by as-
grown impurities (e.g. from nitrogen). However, as was shown experimentally, the probability
of forming the chromium emitters is significantly reduced.

Surprisingly, for the samples implanted with 1 × 1011 Cr cm−2 no significant oxygen
fluence dependence was observed. We varied the Cr : O ratio from 1 : 1.5 to 1 : 20 (samples 7
and 9); however, we did not observe any dependence on the formation probability of the centers
or their optical properties. The optical properties of the centers were likewise unaffected by
the greater oxygen concentration. To unambiguously prove the involvement of the donor, low
densities of Cr should be implanted (<1 × 1010 Cr cm−2). Such studies are planned and the
results will be reported when available.

Such an experiment would also explain the lack of scalability of the observed centers with
the chromium fluence. Comparing samples 5, 7 and 10, the number of active emitters did not
increase although the chromium fluence was increased by three orders of magnitude. This may
indicate that a fluence of 1 × 1011 Cr cm−2 is approaching saturation for converting an implanted
ion into an optical center.

In the second part of this work, we investigated the dependence of the target diamond
material on Cr center formation. Three types of diamond were compared: CVD single crystal
type IIA diamond ([N]< 1 ppm, [B]< 0.05ppm), ultra-pure CVD single crystal diamond ([N]<
5 ppb, [B]< 1 ppb), both purchased from Element Six, and a type IB sample ([N]< 100 ppm,
[B]< 0.1 ppm) produced by Sumitomo. This last crystal was cut and polished from a large
single crystal, which was synthesized under high-pressure high-temperature (HPHT) conditions.
Table 3 summarizes the performed experiments. The annealing sequence was the same as that
described above.

The results of this section are intriguing. When the implantation sequence that generated
single emitters in type IIA diamond (e.g. 1 × 1011 Cr + 1.5 × 1011 O) was applied to an
ultra-pure or a type Ib diamond, single chromium-related centers were never observed (samples
15–18 and 21–25). Figure 5 shows a photoluminescence (PL) spectrum recorded from the ultra-
pure diamond sample (sample 15). A broad emission is observed, similar to the Cr-related
cathodoluminescence map reported in [37]. Neither narrow bandwidth emission nor single
photon characteristics were observed from this sample.

The main difference between these diamonds is the amount of nitrogen. While in an ultra-
pure sample, the level of nitrogen is extremely low, less than ppb, in type Ib the concentration
of nitrogen is extremely high (∼100 ppm). It is therefore likely that nitrogen plays a crucial role
in the formation of the centers. It was shown recently that in an ultra-pure material, there is a
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Table 3. Various implantation routes employed to investigate the formation of
Cr-related centers in an ultra-pure CVD diamond ([N]< 5 ppb, [B]< 1 ppb)
and in a type Ib diamond ([N]< 100 ppm, [B]< 0.1 ppm) grown by the HPHT
method.

Diamond type Implantation details Sample no. Comments

Ultra-pure 1×1011 Cr + 1.5×1011 O 15
[N] < 5 ppb 2×1011 Cr + 3×1011 O 16
[B] < 1 ppb 2×1010 Cr 17 No single centers or

2 × 1010 Cr + 2 × 1010 B 18 narrow PL lines were
1×1011 Cr + 1.5×1011O + 1 × 109N 19 found at all
1 × 1011 Cr + 1.5×1011 O + 1 × 1011 N 20

Type Ib 1 × 1011 Cr + 1 × 1011 Si 21
[N] < 100 ppm 1 × 1013 Cr + 1 × 1013 Si 22 No single centers or
[B] < 0.1 ppm 1 × 1011 Cr 23 narrow PL lines were

1 × 1013 Cr 24 found at all
1 × 1011 Cr + 1.5 × 1011 O 25
1 × 1013 Cr + 1.5 × 1013 O 26

Figure 5. PL spectrum recorded from chromium- and oxygen-implanted ultra-
pure diamond.

large electron depletion layer [38], which may hinder the formation of the center in an ultra-pure
material.

The influence of nitrogen is likely to dominate the charge state of the center. If its
concentration is too high or too low, the chromium emitters may not be formed because the
correct charge state cannot be achieved. Theoretical work by Gali et al [34] indicates that the
charge state of substitutional oxygen depends very sensitively on the Fermi level, so this may
also play a role. The O+2 state is stable when the Fermi level is in the range of 0–1.39 eV
(measured relative to the top of the valence band), while the negatively charged oxygen, O−,
will be stable if the Fermi level is above 2.89 eV. Such strong dependence on the Fermi level
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means that the oxygen located at a vacancy position in diamond has very much amphoteric
character and thus can act as an electron trap in diamond.

To investigate this hypothesis further, we performed two additional experiments: (i) we
co-implanted nitrogen with chromium and oxygen (samples 19 and 20). For sample 20, the
nitrogen fluence was chosen to match the ∼1 ppm of native nitrogen available in type IIA
diamonds. (ii) Sample 20 was annealed and re-implanted with chromium. This was done to
achieve stabilization of the implanted nitrogen so that the nitrogen atoms can occupy the most
stable location in the diamond lattice. However, even in this case no single centers or narrow
PL lines were observed. This stresses the importance of having a particular initial nitrogen
concentration in the target diamond sample. Note that only a small fraction of the implanted
nitrogen atoms occupy substitutional lattice sites and form substitutional nitrogen defects.
The rest will bond to a vacancy forming NV centers. Moreover, nitrogen–interstitial complexes
can be produced in significant concentrations due to N implantation, and can act as electron traps
and are stable even at temperatures where the NV center anneals out [39]. Full activation of the
nitrogen will require higher annealing temperatures currently not available in our laboratory.

The lack of formation of chromium emitters in ultra-pure material, and the very weak
dependence of the formation of chromium centers on the fluence of implanted chromium ions,
leaves some open questions. We do stress that unimplanted samples or samples that were
implanted with other ions (e.g. N, Ni or He) were scanned, but no narrow lines or single
emitters in the same spectral window were ever observed. We cannot rule out the possibility
that chromium activates some other impurities, available in type IIA diamond; however, this
seems extremely unlikely since other materials are expected to do so as well.

In the last part of our experiments, we performed high-energy ion implantation of 9 MeV
chromium and 5.1 MeV oxygen to fluences of 1 × 1011 and 1.5 × 1011 ion cm−2, respectively,
on an NEC 1.7MV tandem accelerator. After the same annealing sequence, the samples were
investigated optically. The results of the deep implantation were similar to the shallow one,
with an average yield of 10−4%. This observation strongly suggests that vacancies are not a
limiting factor in the formation of the center, because more than 5000 vacancies per ion are
formed during the high-energy implantation. This is much greater than that produced by the low-
energy implanted ions. On the other hand, it was shown recently that NV formation dramatically
increases when nitrogen is implanted deep into the diamond. The higher the implantation energy,
the more vacancies are created around the substitutional nitrogen atom, giving rise to a higher
yield of NV centers [40]. Therefore, even if vacancies are not forming the chromium center,
a more radical condition (such as a specific charge state or complex with additional impurity)
must be met to form the centers.

To summarize, by employing ion implantation and confocal microscopy, we investigated
the fabrication methodologies of chromium-related centers and the influence of co-implanted
impurities. Our results provide a robust recipe for production of such centers in CVD type
IIA single crystal diamond, despite their low formation probability. The best recipe for
producing chromium single photon emitters is implanting chromium and either oxygen or
sulfur to a fluence of ∼1 × 1010 ions cm−2 followed by a 2 h, 1000 ◦C anneal in a forming gas
ambient.

We acknowledge that some of the results may have various interpretations and peculiarities
(e.g. the centers were never found in an ultra-pure material and there is no clear scalability with
the implantation dose). However, we believe that the presented information is an important
milestone toward a complete understanding of the emitters’ structure.
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To further the progress in understanding the physical properties of the new family of
chromium defects, further experimental and theoretical work is required [41]. In particular,
implantation of Cr atoms with low doses and a thorough investigation of different annealing
conditions should be considered [42]. Once solid theoretical support is provided, it may be
possible to increase the fabrication yield of the centers and understand the atomic composition
of the defects.
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