80 research outputs found

    Orotic Aciduria

    Get PDF
    Orotic acid is an intermediate found in the pathway for pyrimidine synthesis. The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes the production of orotic acid by the conversion of the compound dihydroorotate to orotic acid. Orotic acid is commonly produced by this reaction in erythrocytes, hepatocytes, and kidney cells. Chemical modification of orotic acid in the pyrimidine pathway will generate nucleotides involved in DNA and RNA synthesis. Orotic aciduria can occur as a secondary manifestation due to a defect in an enzyme or transporter within the urea cycle, due to competitive inhibition by anti-cancer drugs such as allopurinol and 6-azauridine, or due to diseases such as Reye’s syndrome and mitochondrial disorders. The primary cause of orotic aciduria is a rare, autosomal recessive disorder in the family of inborn errors in metabolism, and can be categorized into three groups. Type I, II, and III orotic aciduria occur due to a genetic defect in the bifunctional enzyme uridine monophosphate synthase (UMPS). Neonatal patients diagnosed with this disorder commonly exemplify symptoms such as lethargy, difficulty feeding, and low birth weight and height. Neural and developmental deficits, megaloblastic anemia, and crystalluria may also occur. Laboratory findings typically include extremely high urinary orotic acid levels, megaloblastic anemia, and very low UMPS activity. Since early treatment with Xuriden may cause remission of symptoms, future studies should focus on improving early detection screening methods. Early diagnosis and treatment is clinically significant because impaired pyrimidine synthesis can lead to severe symptoms such as mental retardation, coma, or death

    A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition

    Get PDF
    Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin–trypanothione reductase–NADPH complex was solved at 3.5 Å resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis

    Cerebrospinal fluid sodium rhythms

    Get PDF
    Background: Cerebrospinal fluid (CSF) sodium levels have been reported to rise during episodic migraine. Since migraine frequently starts in early morning or late afternoon, we hypothesized that natural sodium chronobiology may predispose susceptible persons when extracellular CSF sodium increases. Since no mammalian brain sodium rhythms are known, we designed a study of healthy humans to test if cation rhythms exist in CSF. Methods: Lumbar CSF was collected every ten minutes at 0.1 mL/min for 24 h from six healthy participants. CSF sodium and potassium concentrations were measured by ion chromatography, total protein by fluorescent spectrometry, and osmolarity by freezing point depression. We analyzed cation and protein distributions over the 24 h period and spectral and permutation tests to identify significant rhythms. We applied the False Discovery Rate method to adjust significance levels for multiple tests and Spearman correlations to compare sodium fluctuations with potassium, protein, and osmolarity. Results: The distribution of sodium varied much more than potassium, and there were statistically significant rhythms at 12 and 1.65 h periods. Curve fitting to the average time course of the mean sodium of all six subjects revealed the lowest sodium levels at 03.20 h and highest at 08.00 h, a second nadir at 09.50 h and a second peak at 18.10 h. Sodium levels were not correlated with potassium or protein concentration, or with osmolarity. Conclusion: These CSF rhythms are the first reports of sodium chronobiology in the human nervous system. The results are consistent with our hypothesis that rising levels of extracellular sodium may contribute to the timing of migraine onset. The physiological importance of sodium in the nervous system suggests that these rhythms may have additional repercussions on ultradian functions

    In vitro reactivation of latent HIV-1 by cytostatic bis (thiosemicarbazonate) gold(III) complexes

    Get PDF
    BACKGROUND : A number of cytostatic agents have been investigated for the ability to reactivate latent viral reservoirs, which is a major prerequisite for the eradication of HIV-1 infection. Two cytostatic bis(thiosemicarbazonate) gold(III) complexes (designated 1 and 2) were tested for this potential in the U1 latency model of HIV-1 infection. METHODS : Cell viability in the presence or absence of 1 and 2 was determined using a tetrazolium dye and evidence of reactivation was assessed by p24 antigen capture following exposure to a latency stimulant, phorbol myristate acetate (PMA) and or test compounds. The latency reactivation mechanism was explored by determining the effect of the complexes on protein kinase C (PKC), histone deacetylases (HDAC) and proinflammatory cytokine production. RESULTS : The CC50 of the complexes in U1 cells were 0.53 ± 0.12 μM for 1 and 1.0 ± 0.4 μM for 2. In the absence of PMA and at non toxic concentrations of 0.2 and 0.5 μM, 1 and 2 significantly (p ≤ 0.02) reactivated virus in U1 cells by 2.7 and 2.3 fold respectively. In comparison, a 2.6 fold increase (p = 0.03) in viral reactivation was observed for hydroxyurea (HU), which was used as a cytostatic and latent HIV reactivation control. Viral reactivation was absent for the complexes during co-stimulation with PMA indicating the lack of an additive effect between the chemicals as well as an absence of inhibition of PMA induced HIV reactivation but for HU inhibition of the stimulant’s activity was observed (p = 0.01). Complex 1 and 2 activated PKC activity by up to 32% (p < 0.05) but no significant inhibition of HDAC was observed. Increases in TNF-α levels suggested that the reactivation of virus by the complexes may have been due to contributions from the latter and the activation of PKC. CONCLUSION : The ethyl group structural difference between 1 and 2 seems to influence bioactivity with lower active concentrations of 1, suggesting that further structural modifications should improve specificity. The cytostatic effect of 1 and 2 and now HIV reactivation from a U1 latency model is consistent with that of the cytostatic agent, HU. These findings suggest that the complexes have a potential dual (cytostatic and reactivation) role in viral “activation/elimination”.AuTEK Biomed (Mintek and Harmony Gold),Technology Innovation Agency (TIA) and the University of Pretoria.http://www.biomedcentral.com/bmcinfectdis/hb201

    The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebrospinal fluid (CSF) contacts many brain regions and may mediate humoral signaling distinct from synaptic neurotransmission. However, synthesis and transport mechanisms for such signaling are not defined. The purpose of this study was to investigate whether human CSF contains discrete structures that may enable the regulation of humoral transmission.</p> <p>Methods</p> <p>Lumbar CSF was collected prospectively from 17 participants: with no neurological or psychiatric disease, with Alzheimer's disease, multiple sclerosis, or migraine; and ventricular CSF from two cognitively healthy participants with long-standing shunts for congenital hydrocephalus. Cell-free CSF was subjected to ultracentrifugation to yield supernatants and pellets that were examined by transmission electron microscopy, shotgun protein sequencing, electrophoresis, western blotting, lipid analysis, enzymatic activity assay, and immuno-electron microscopy.</p> <p>Results</p> <p>Over 3,600 CSF proteins were identified from repeated shotgun sequencing of cell-free CSF from two individuals with Alzheimer's disease: 25% of these proteins are normally present in membranes. Abundant nanometer-scaled structures were observed in ultracentrifuged pellets of CSF from all 16 participants examined. The most common structures included synaptic vesicle and exosome components in 30-200 nm spheres and irregular blobs. Much less abundant nanostructures were present that derived from cellular debris. Nanostructure fractions had a unique composition compared to CSF supernatant, richer in omega-3 and phosphoinositide lipids, active prostanoid enzymes, and fibronectin.</p> <p>Conclusion</p> <p>Unique morphology and biochemistry features of abundant and discrete membrane-bound CSF nanostructures are described. Prostaglandin H synthase activity, essential for prostanoid production and previously unknown in CSF, is localized to nanospheres. Considering CSF bulk flow and its circulatory dynamics, we propose that these nanostructures provide signaling mechanisms <it>via </it>volume transmission within the nervous system that are for slower, more diffuse, and of longer duration than synaptic transmission.</p

    Alzheimers Dement

    Get PDF
    Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces

    Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms

    Get PDF
    BACKGROUND: Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. METHODS: The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). RESULTS: Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). CONCLUSION: The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms.The Medical Research Council, the Technology Innovation Agency and the University of Pretoria, South Africa.http://www.biomedcentral.com/bmccomplementalternmedam201
    corecore