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Abstract

Disturbances in the brain’s capacity to meet its energy demand increase the risk of

synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic

interventions that target metabolic pathways combined with diagnostics to iden-

tify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential

for Alzheimer’s disease (AD) prevention and management. Many diet-derived natu-

ral bioactive components can govern cellular energy metabolism but their effects on

brain aging are not clear. This review examines how nutritional metabolism can reg-

ulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of

cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as

the putative causes and consequences of disturbed bioenergetics, particularly at the

blood-brain barrier with implications for nutrient brain delivery and nutritional inter-

ventions. Novel therapeutic nutrition approaches including diet patterns are provided,

integrating studies of the gut microbiome, neuroimaging, and other biomarkers to

guide future personalized nutritional interventions.

1 INTRODUCTION

The human adult brain utilizes ∼20% of the whole body’s energy

resources, yet it only represents ∼2% of the body mass. This under-

scores an enormous metabolic workload, which is mainly fueled by

glucose and several nutrients derived from the circulation.1 Interplay

between disrupted intracellular bioenergetic pathways is likely to be

relevant to degenerative brain diseases. It is already suspected that

relationships between changing efficiency of glycolysis, the pentose

phosphate shunt, theKrebs cycle, and oxidative phosphorylation fluxes

affect signaling and transcription changes observed in age-related neu-

rodegenerative diseases. These metabolic relationships are currently

being addressed on a mechanistic level, but extending such investi-

gations to clinical interventions in diseases like Alzheimer’s disease

(AD) could provide valuable insights for prevention and therapeutics.2

Specifically, these investigations should aim to substantiate the role

of cerebral bioenergetics as a causal factor for the onset of AD

rather than a consequence of brain cell degeneration. This may include

demonstrations that AD genetic risk loci impact bioenergetics, bioen-

ergetic deficits precede and contribute to the classical hallmarks of

AD pathology (i.e., plaque and tangles), and, ultimately, restoration of

cerebral bioenergetic disturbances to promote cognitive health and/or

prevention of neurodegeneration in formal randomized-controlled

interventions.

This review focuses on key mechanisms involved in cerebral bioen-

ergetics, and how deficits in these pathways may contribute to cog-

nitive decline in AD. Cell, animal, and clinical studies are presented

that enhance our understanding of how genetic, environmental risk

factors and emerging factors such as the gut microbiome affect brain

uptake and utilization of nutrients. We then discuss current mech-

anistic understandings of mitochondrial energetic changes in aging

and AD, which suggest that insufficient nutritional support of cerebral

bioenergetics may occur as early as mid-life prior to significant neu-

ropathology and compounds with disturbed nutrient delivery to the

brain. Finally, we present examples of promising single nutrients or

combinationspaired togetherwithdiet patterns and identify newareas

of basic research, blood, and imagingbiomarkers to guide future clinical

interventions.

2 NUTRITIONAL REGULATION OF BRAIN
ENERGY METABOLISM IN AD PATHOGENESIS

It is estimated that the brain consumes 120 g of glucose per day or

about 20% of the body’s glucose utilization during a resting state.

Glucose undergoes glycolysis to pyruvate, which is metabolized to

acetyl CoA as the key carbon source for respiration or oxidative

phosphorylation to generate adenosine triphosphate (ATP) in mito-

chondria (Figure 1A). In resting conditions, the favoredmetabolic route

is mitochondrial oxidative phosphorylation, while highly demand-

ing activity states such as synaptic plasticity, learning, and mem-

ory require the additional contribution from glycolysis or lactate

metabolism.3–5 When the brain is starved for glucose during hypo-

glycemia or as a result of defective glucose transporters (GLUT)

function,6 cells utilize liver-derived ketone bodies such as acetoac-

etate and 3-hydroxybutyrate to form acetyl CoA. These ketone bodies

temporarily replace glucose as the energy source in the brain, but the

ketogenic brainmust revert to a precise regulation of glucose oxidation

tomaintain prolonged CNS function.7

Several nutrients, including vitamins, amino acids, trace elements

(e.g., iron and magnesium) and fatty acids derived from dietary intake

of carbohydrates, fats, and proteins are concentrated in the brain

and may have a role in meeting brain energy demand and their
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YASSINE ET AL. 3

brain delivery is affected by AD (Table 1). Several nutrients serve as

cellular bioenergetic catalysts to produce key energetic substrates for

sustained neuronal function (i.e., ATP). Some micronutrients serve as

coenzymes and cofactors for enzymatic reactions while others play a

structural role within the enzyme and the mitochondrial cytochromes.

Others serve as electronandproton carriers in theATP-generating res-

piratory chain, including B vitamins and ascorbic acid.8,9 For example,

thiamin pyrophosphate (TPP; vitamin B1), pantothenic acid (vita-

min B5; precursor for co-enzyme A synthesis), flavin mononucleotide

(FMN; derived from vitamin B2), flavin adenine dinucleotide (FAD;

derived fromvitaminB2) andnicotinamide adeninedinucleotide (NAD;

derived from nicotinamide) are involved in the Krebs cycle and I and II

complexes of the respiratory chain. Biotin, CoA, and FAD are involved

in heme biosynthesis, which is an essential part of the cytochromes

and important for mitochondrial respiratory chain reactions. Succinyl-

CoA can nourish the respiratory chain or the Krebs cycle depending

upon specific cellular needs.10,11 Iron has important roles in maintain-

ing the high metabolic and energetic requirements of neuronal tissues

and is also involved in myelin synthesis, neurotransmitter synthesis,

andmetabolism.12

RESEARCH INCONTEXT

1. Systematic review: Does providing adequate energy to

the dementia-at-risk brain limit the progression to neu-

rodegenerative diseases such as AD? Systematic reviews

of randomized trials of dietary and nutritional supple-

ments have reported largely null effects on cognitive

outcomes.

2. Interpretation: Because the aging brain and AD risk fac-

tors affect thedeliveryof nutrients to thebrainbefore the

onset of dementia, preventive nutritional interventions

during mid-life may prove more effective when started

early, while other nutritional interventions (such as the

ketogenic diet) maywork later in the disease process.

3. Futuredirections: Abetterunderstandingofbrainenergy

utilization pathways throughout the lifespan and in both

healthy aging and disease states guided by nutrition-

brain-specific biomarkers can inform personalized nutri-

tion clinical trials.

F IGURE 1 (A) Glucose is themain energy substrate in the brain. Glucose undergoes glycolysis to pyruvate, which is metabolized to acetyl CoA,
as the key source of carbon for oxidative phosphorylation (Oxphos) to generate adenosine triphosphate (ATP). In resting conditions, the favored
metabolic route is Oxphos, while highly demanding activity require contributions from glycolysis or lactatemetabolism.When the brain is starved
for glucose, ketone bodies aremetabolized to form acetyl CoA. (B) Failure to utilize glucose and energetic stress shifts metabolism into oxidation
of fatty acids, which leads to ROS production. The activation of cPLA2 promotes the formation of inflammatory lipid mediators (eicosanoids).
Incomplete fatty acid oxidation (FAO) in themitochondria is reflected by levels of acylcarnitines in the blood and the brain. The oxidation of n-3
fatty acids in the ER results in DCA accumulation, a urinary biomarker of bioenergetic stress. COX, cyclooxygenase; cPLA2, calcium dependent
phospholipase A2; OxPhos, oxidative phosphorylation; CPT-1, carnitine palmitoyltransferase 1; CYP, cytochrome P450; DCA, dicarboxylic acids;
ER, endoplasmic reticulum; FAO, fatty acid oxidation; LOX, lipoxygenase; ROS, reactive oxygen species; TCA, tricarboxylic acid
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4 YASSINE ET AL.

TABLE 1 Nutrients with a putative role in cerebral bioenergetics: function, concentration gradient, and transport mechanisms

Nutrient and reference Function, concentration gradient Transporters and location

B1 thiamine238,239 CSF/serum ratio 2.1:1 for thiamine, 8.3:1 for thiamin

monophosphate

SLC25A19mitochondria

SLC19A3 brain unknown

SLC19A2 ubiquitous

B6 pyridoxine, pyridoxal,

PLP46

CSF/plasma ratio 1.3:1

PL= pyridoxal is most abundant in CSF; requires

phosphorylation of PL to PLP centrally;

BBBUnknown bidirectional transport; facilitated diffusion

BCSFB

B7 biotin240 CSF/serum ratio 1:3.2

CSF/serum ratio lower in AD

SMVTBCSFB

B9 folate241,242 CSF-blood ratio is 4:1

CSF folate levels are lower in AD

Folate in enriched inmitochondrial fractions

FOLR1 BCSFB

BBB folate receptor at the BCSFB; FR alpha blood to CSF;

receptor mediated endocytosis

B12 cobalamin243–245 CSF/serum ratio 1:20

CSF/serum ratio is lower in AD

Required for the oxidation of odd-chain fatty acids and

catabolism of ketogenic amino acids

Homocysteinemetabolism

Cubam receptors at the BCSFB

Vitamin C, ascorbic

acid246,247
CSF/Serum ratio 3:1

Essential for carnitine synthesis, involved in transport

of long chain fatty acids into themitochondria and

fatty acid oxidation.

Facilitates transport and uptake of non-heme iron at

themucosa, and reduction of folic acid intermediates.

SVCT-2 basolateral BCSFB

GLUT1 (SLC2A1) as dehydroascorbic acid at BBB

GLUT4 as dehydroascorbic acid within Astrocytes

DHA, docosahexaenoic

acid108,248
CSF to plasma ratio 1:75

Component of structural phospholipids in the CNS

CSF to plasma ratio lower in AD

MFSD2A109

Fatty acid binding proteins249

Vitamin D,

cholecalciferol, 25

hydroxyvitamin

D250–252

CSF to serum ratio 1.4: 1

Lower CSF/serum ratio in AD

1alpha-hydroxylase the enzyme responsible for the

formation of the active form in the human brain

VDR

VDBP

Abbreviations: PLP, Pyridoxal 5′-phosphate; PL, pyridoxal; SMVT, sodium dependent multivitamin transporter; BCSFB, blood cerebrospinal fluid barrier;

SVCT, sodium dependent vitamin C transporter; BBB, blood brain barrier; CSF, cerebrospinal fluid; FOLR1, Folate receptor 1; FR alpha, folate receptor alpha;

GLUT, glucose transporter; VDR, Vitamin D Receptor; VDBP, Vitamin D Binding Protein, MFSD2A, major facilitator superfamily domain-containing protein

2a

Fatty acids are a minor source to fuel ATP production in the

brain.13 First, the high oxygen consumption associated with fatty acid

β-oxidation (FAO) increases the risk of neurons becoming hypoxic

because oxygen pressure is nonuniform and low.14 Second, the utiliza-

tion of fatty acids as fuel increases susceptibility to oxidative damage.

The mitochondria are a major source of reactive oxygen species (ROS)

generation.15 Superoxide is formed by a one-electron transfer from

certain sites within the mitochondrial electron transfer chain (ETC) to

molecular oxygen.15 FAO in both the mitochondria and peroxisomes

is a source of superoxide production. Neuronal membranes are rich in

polyunsaturated fatty acids (PUFAs), namely the n-6 arachidonic acid

(AA) and n-3 docosahexaenoic acid (DHA), which constitutes a sig-

nificant proportion of gray matter fatty acids.16,17 The double bonds

in PUFAs are particularly vulnerable to oxidative stress, so neurons

are susceptible to oxidative damage and require constant antioxidant

protection. In activated brain areas, the local increase in oxygen con-

sumption is lower than that of the glucose consumption,18 supporting

the need to uncouple glucose use from oxygen consumption for ATP

production. Indeed, elevated lactate observed during high neuronal

activity supports this uncoupling of glucose use from oxygen consump-

tion and indicates that selective activationof glycolysis is amajor driver

of brain ATP production,19 when oxidative ATP supply is at maximal

capacity. In a resting, awake brain, most of the glucose is completely

oxidized to CO2 andwater.

2.1 Cell-specific bioenergetics

Brain cell types approach their energy needs and bioenergetic fluxes

differently, and these routes align specific parts of the brain with

cell-specific functions to determine nutrient needs. This impact is

seen at the molecular level and involves glycolysis, the Krebs cycle,

mitochondrial function, and overall strategies for making ATP. These

signaling-related energy demands also involve metabolic plasticity,

which is achieved by epigenetic and transcriptional activities.

2.1.1 Neuron-astrocyte energy shuttles

Astrocytes are the most numerous glial cells and have a major

role in supporting neuronal energy demands. Interestingly, despite

their need to respire, neuronal mitochondria are not structured to
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YASSINE ET AL. 5

perform FAO, which could reflect the need of neurons to maintain

an extensive membrane surface area. Conversely, respiration appears

less critical for obtaining the overall bioenergetic needs of astro-

cytes. Astrocytes appear to maintain high rates of glycolysis, and to

some extent manage the gateway through which glucose enters the

brain parenchyma.Unlike neuronalmitochondria, astrocyticmitochon-

dria can perform FAO, but this function is limited by low rates of

long-chain fatty acid transport.20 At face value, this might seem to

contradict the astrocyte’s reduced dependence on respiration for gen-

erating ATP. The logical explanation for this relates to the fact that

astrocytes can provide carbon intermediates that fuel neuron mito-

chondrial respiration.21 In the brain, lactate produced via glycolysis

or stored glycogen (glycogenolysis) is released from astrocytes via the

monocarboxylate transporter 4 (MCT4). It is then taken up by mono-

carboxylate transporter 2 (MCT2) present on neuronal membranes.22

This lactate, upon conversion to pyruvate, undergoes oxidation by neu-

ronal mitochondria. The described “astrocyte-neuron lactate shuttle

hypothesis” is thus activated under aerobic conditions inwhich activity

at neuronal glutamatergic synapses promotes the production of lac-

tate by astrocytes that supplements the basal production of neuronal

ATP normally coming from the oxidation of glucose carbon derived

directly from neuronal glycolysis.23 In low glucose conditions, lactate

glycogenolysis in astrocytes may be upregulated to fulfill demand by

neurons. Lactate shuttling and the supply of carbon to neurons can

be disrupted by various processes, including: a generalized decrease in

glucose uptake via down-regulation of glucose transporter at the BBB,

reduced expression of hexokinase, and alterations in the expression

of astrocytic MCT4 and neuronal MCT2 during aging.24,25 A similar

“ketone body shuttle” is also postulated where beta-hydroxybutyrate

and acetoacetate are generated from FAO in astrocytes that addition-

ally support neuronmitochondrial respiration.26 This reduced reliance

on respiration further enables astrocytic mitochondria to recover

carbon for macromolecule synthesis.

2.1.2 Oligodendrocytes

Oligodendrocytes are the glial cells that produce myelin. Recently

findings have increased appreciation for the roles of myelin in the

optimal functioning of the nervous system besides axonal integrity.

Myelin provides trophic and metabolic support to axons by secre-

tion of growth factors and by transfer of energy metabolites.27,28

Oligodendrocytes also provide direct metabolic support to neurons

as a source of lactate to the axon.29,30 In the CNS, monocarboxy-

late transporter 1 (MCT1) is mainly expressed by oligodendrocytes.31

Lactate is released to the periaxonal space, the space between the

axonal membrane and the myelin sheath, through the MCT1 and is

transported into the axonal cytoplasm via MCT2.29,30 Oligodendro-

cytes can also supply glucose to the axons, as seen in the corpus

callosum32 and thalamus.32 Oligodendrocytes also deliver glucose and

lactate to the axons together with astrocytes.33 Moreover, oligoden-

drocytes can directly modulate axonal energy metabolism by trans-

ferring sirtuin 2 (SIRT2) in exosomes, which in turn promote axonal

mitochondrial ATP production by deacetylation of mitochondrial

proteins.34

2.1.3 Microglia

Microglia are mononuclear phagocytes in the CNS that are derived

from myeloid progenitors outside of the brain during embryonic

development.35 Microglia predominantly rely on ATP as an energy

substrate via glucose metabolism through glycolysis, the TCA cycle,

and oxidative phosphorylation to remove apoptotic neurons,36 prune

non-functional synapses,37 and produce trophic factors that increase

neuronal survival38 under homeostatic conditions. Lactate may also

be an energy substrate for microglial metabolism, as recent reports

demonstrated that microglia express MCTs and lactate dehydroge-

nase B which is responsible for catabolizing lactate into pyruvate.39

Microglia show remarkablemetabolic flexibility depending on the envi-

ronmental conditions of thebrain parenchyma in vivo, as recent studies

using time-lapse two-photon imaging of the mouse brain demonstrate

that microglia can adapt to use glutamine as a metabolic fuel in the

absence of glucose.40 This flexibility suggests that the microglia phe-

notypes and functions to maintain homeostasis in the central nervous

system are directly tied to energymetabolism.

2.1.4 Endothelial cells

Endothelial cells (EC) are key components of the blood-brain barrier

(BBB). The layer of ECs represents a tightly sealed cell that that results

in high trans-endothelial electrical resistance and low paracellular

and transcellular permeability,41 separating the brain from the blood-

stream. The endothelium of the BBB has multiple specific proteins

acting as transporters and receptors (Figure 2A), which are responsible

for the passage of metabolites, nutrients, and junction proteins. Glu-

cose transport is regulated byGLUTs, and solute carrier family proteins

(SLCs)Among them, themost highly expressed transporter isGLUT1.42

SLCs, SLC carriers, organic cation transporters (OCTs), and facilitated

diffusion carriers are additional transporters to facilitate the uptake

of creatine,43 choline,44 amino acids (glutamate, aspartate, GABA,

and glycine),45 nucleosides, nucleoside triphosphate, nucleobases,42

water-soluble vitamins, that is, thiamine, biotin, folate, and ascorbic

acid46 as well as essential metals acting as enzyme cofactors.47 Inter-

estingly, the number of mitochondria in ECs is five or six times greater

than other tissues of the human body,48 reflecting the high energy

needs of ECs to maintain brain homeostasis. The major micronutri-

ents with a putative role in cerebral bioenergetics, their function,

concentration gradient, and transport mechanisms through ECs are

summarized in Table 1.

2.1.5 Epithelial cells

The blood CSF barrier (BCSFB) found at the lateral, third and fourth

ventricle of the brain is composed of CSF facing cuboidal epithelial
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6 YASSINE ET AL.

F IGURE 2 (A) Key transport proteins at the BBB includeMCT for ketones, GLUTs for glucose, MFSD2A for DHA. Efflux of waste, drugs or
excess nutrients is mediated by the Pgp, ATP binding cassette, BCRP andMRPs. Vitamin and nutrients are taken up via solute carriers and receptor
mediated endocytosis pathways. An energy dependent mechanism regulates nutrient brain uptake transport. Endothelial cells of the BBB have a
high density of mitochondria. Loss of BBB function affects gapping of tight junctions, cell surface transporters all of which are linked to
mitochondrial dysfunction. (B) Key nutrient transporters at the choroid villus. ATP binding cassette, adenosine triphosphate binding cassette; BBB,
blood-brain barrier; BCRP, breast cancer resistance protein; BCSFB, blood cerebrospinal fluid barrier; CSF, cerebrospinal fluid; FOLR1, Folate
receptor 1; GLUTs, glucose transporters; MCT, monocarboxylate transporters; MFSD2A, major facilitator superfamily domain-containing protein
2a;MRPs, multidrug resistance proteins; Pgp, P-glycoprotein; PLTP, phospholipid transfer protein; RBC, Red blood cell; SLC19A1: Solute Carrier
Family 19Member 1; SMVT, sodium dependent multivitamin transporter; SVCT, sodium dependent vitamin C transporter

cells of the choroid plexus. These mitochondria-abundant epithelia

have a Golgi apparatus, smooth endoplasmic reticulum, and lysosome-

like vesicles to synthesize and aid in sustaining CSF and also facilitate

CNS nutriture, including known transporters for vitamin C, B vitamins

(folate, pantothenic acid, biotin) and vitamin E (PLTP)49 (Figure 2B).

2.1.6 Pericytes

Pericytes play an important role in the development of cerebral micro-

circulation and maintaining BBB integrity. Within the brain, pericytes

actively relax or contract to change cerebral blood flow in response to

localized changes in neuronal activity.50

2.2 Cerebral bioenergetics supply and
dysfunction in AD

Amyriad of cerebral bioenergetics failures in AD have been described

that occur with changes in the immune system, protein and lipid home-

ostatic systems and intersect with brain nutrient delivery (Figures 1B

and 3). These observations have led to the generation of hypotheses

that impairment in the supply and utilization of energy sources to the

brain can be a cause of synaptic dysfunction, neurodegeneration, and

cognitive decline in AD, rather than just being a consequence of AD

neuropathology and cell death characterized by the formation of extra-

cellular amyloid-beta plaques and intracellular, insoluble tau tangles. In

support of this rationale, amyloid plaques first appear in brain regions

that feature high levels of aerobic glycolysis in patients with AD,51

which suggests that brain regions that are most dependent on astro-

cyte assistance for meeting their bioenergetic needs are those that are

most likely to acquire plaques. Moreover, mitochondrial bioenergetic

stress associates with measures of chronic inflammation and oxidative

stress.52

2.2.1 Dysregulated glucose metabolism

Imaging biomarkers of brain glucose uptake, oxygen utilization, and

blood flow in cognitively normal adults from 20 to 82 years revealed

that aging associates with lower brain glucose uptake that exceeds

the decrease in oxygen use, resulting in declining brain glycolysis.53 In

patients with mild cognitive impairment, lower brain glucose uptake

using 18F-fluorodeoxyglucose (FDG)-positron emission tomography

(PET) scans predicts progression to AD dementia54. Consistent with

lower brain glucose uptake and neurovascular coupling, microvascu-

lar glucose transporters GLUT1were shown to be decreased by nearly

50% in the cerebral endothelium of patients with AD dementia.55

GLUT3 concentrations are also decreased in AD compared with age-

matched controls.56,57 Preclinical evidence suggests that changes in

brain glycolysis is associated with defects in mitochondrial oxida-

tive phosphorylation, reflecting an energy crisis.58 The need for more

energy substrates drives greater mobilization of fatty acids from neu-

ronal membranes, increasing susceptibility to oxidative damage. For

example, the metabolism of arachidonic acid (AA) leads to an increase

in neuroinflammatory responses from astrocytes and microglia and

oxidative stress byproducts.59,60 Prostaglandins, leukotrienes, and

pro-resolvins derived from liberated PUFAs appear to promote a state

of unresolved chronic inflammation in AD that can ultimately lead to

neuronal loss.61,62
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YASSINE ET AL. 7

F IGURE 3 Cell-specific brain changes in Alzheimer’s disease, showing interactions of brain nutrient uptake and utilization with blood-brain
barrier (BBB) function. Bioenergetic failure and loss of BBB function is associated with chronic inflammation and oxidative stress (ROS) in several
brain cell types, associating with an increase in lipid droplets in glial cells, loss of myelin, and the appearance of classic AD pathologymarkers of
amyloid plaques and neurofibrillary tangles. Bioenergetic stress is reflected initially by an increase in glycolytic flux and dysfunctional
mitochondrial oxidative phosphorylation.

2.2.2 Impaired mitochondrial FAO

There is good evidence of impaired FAO in AD. Disturbance in

respiration-associated components are observed in AD. These include:

pyruvate dehydrogenase complex, which catalyzes the entry of car-

bons derived from glucose into the citrate cycle; the α-ketoglutarate
dehydrogenase complex comprises a key catalytic step in the citrate

cycle and is an enzyme of glutamate metabolism; and cytochrome

oxidase or complex IV, the component of the electron transport

chain which uses molecular oxygen as one of its substrates.63,64

When glucose supply is reduced to the brain during metabolic chal-

lenges, FAO in mitochondria provides ketone bodies that can be

a supplemental energy source for brain bioenergetics.65 Compared

to neurons and microglia, astrocytes preferentially express carnitine

palmitoyltransferase-1 (CPT-1), which combines L-carnitine with long

chain fatty acid (LCFA) to generate acylcarnitines that then entermito-

chondria for FAO.20 As such, carnitine/acylcarnitines metabolism may

play an important role in brain bioenergetic failure states where FAO

is detrimental for normal neuronal function. Medium chain acylcar-

nitines (MCA) are key substrates for FAO.66 MCA can be converted

to ketone bodies in the periphery and transported to the brain to sup-

port bioenergetics.67 The contributions ofMCA and LCA to FAO in AD

warrant further investigation, as reports have shown that MCA lev-

els are decreased68–70 or elevated71,72 in plasma and cerebrospinal

fluid (CSF) of AD patients. Given that LCFA is enriched in polyun-

saturated fatty acids that have numerous double bonds, they are

susceptible to lipid peroxidation, thereby contributing to ROS genera-

tion.On theother hand,mediumchain fatty acids (MCFA) likely contain

fewer double-bonds, and this may contribute to lower levels of ROS

generation.

2.2.3 Oxidative damage

There is evidence of oxidative damage to proteins and lipids in AD,71

and we anticipate effects from ω-oxidation will be manifest in AD. Ω-
oxidation of lipids resulting in short- and medium-chain dicarboxylic

acid (DCA) production is normally a minor pathway for normal fatty

acid metabolism72; it is considered a rescue pathway that compen-

sates for defects in FAO, and urinary excretion of DCAs increase

in persons who have defects in fatty acid metabolism.73 In addi-

tion, increased ω-oxidation may provide succinyl-CoA for the Krebs

cycle and gluconeogenesis.73,74 Ω-oxidation is also upregulated with

increased cytochrome P450 enzyme activity.75 C4-DCAmodifies (suc-

cinylates) several mitochondrial proteins,76 while other DCAs such

as azelaic acid (C9-DCA) may have anti-inflammatory, antioxidative,

and bactericidal activity.77 Thus, changes in DCA levels can directly

dysregulate energy pathways and influence AD-relatedmechanisms.

2.2.4 Cell-specific bioenergetic failure in AD

All brain cell types all show evidence of inflammation, oxidative and

bioenergetic stress contributing to neuronal energy failure (Figure 3).
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8 YASSINE ET AL.

Oligodendrocyte dysfunction and white matter loss are often among

the earliest brain changes in AD,78–82 suggesting that the supply of

energy substrates from oligodendrocytes to the axons such as lactate

will be diminished, resulting in aggravation of the neuronal dysfunc-

tion. Aβ accumulation and tau hyperphosphorylation may lead to

further disruption of myelin integrity and oligodendrocyte maturation

and metabolism through oxidative stress, neuroinflammation, and/or

excitotoxicity.80,83–87 Like oligodendrocytes, astrocytic morphology

and functions are abnormal in AD, resulting in deleterious effects that

include reduced carbon delivery to neurons for oxidative phosphoryla-

tion, and dysregulated linkages between neuronal energy demand and

regional blood supply.88 Similarly, microglial metabolism shifts from

oxidative phosphorylation to aerobic glycolysis as observeduponacute

exposure to stressors such as fatty acids orAβ.89,90 Thismetabolic shift

to aerobic glycolysis in microglia can be a driver of AD pathology, as

the increased production of lactate in microglia results in epigenetic

modifications that activate glycolytic genes in a positive impact loop

in the 5XFAD mouse model.91 Endothelial cells and pericytes regu-

late the energy sensing pathways in response to changes in nutrient

availability, allowing them to move between quiescent and prolifer-

ative states.92,93 Dysfunctional FAO in pericytes can cause them to

undergo apoptosis anddetach from theendothelial cell, contributing to

capillary pruning.93 Pericyte loss plays an important role in neurovas-

cular dysfunction. It leads to brain vascular damage by a reduction

in brain microcirculation causing diminished brain capillary perfusion,

cerebral blood flow, and cerebral blood flow responses to brain activa-

tion,which ultimatelymediates chronic perfusion stress andhypoxia.94

Taken together, these data suggest that changes to cellular bioener-

getics are key factors that influences the onset AD pathophysiology.

However, many questions remain about the causal role of individ-

ual cell type bioenergetics and AD, and future studies should aim to

define these metabolic changes more clearly over the entire AD time

course.

2.2.5 Blood-brain barrier dysfunction, nutrient
transport, and maintenance in the CNS

BBB breakdown as assessed with dynamic contrast enhanced MRI

or through lumbar puncture derived CSF albumin index is associated

with aging,95,96 neuroinflammation,97 AD,98 and accelerated cogni-

tive decline.97,98 Compromise of BBB integrity is associated with

brain accumulation of toxic molecules involved in neuronal degener-

ative changes.99 Several types of neurotoxic blood-derived molecules

that can enter brain after BBB breakdown leading to synaptic and

neuronal dysfunction.100 These include iron species derived from

hemoglobin; fibrinogen that activates microglia promoting neuroin-

flammatory response, and also causing retraction of neurites andwhite

matter injury to oligodendrocytes and pericytes; thrombin that is

directly neurotoxic and reviewed in more detail by Sweeney et al.100

A pro-inflammatory response may also cause BBB disruption via

upregulating various factors, and this can cause leukocytes to enter

perivascular spaces and may further cause an inflammatory cascade.

Dysregulation in BBB function occurs with known risk factors for AD

such as aging,95 APOE genotype,101 and conditions such as metabolic

syndrome.102

The functional changes at the BBB and BCSFB can alter brain per-

fusion and delivery of glucose, oxygen, and other nutrients to the

brain from the blood, whichmay have implications for nutritional inter-

ventions across disease stages and age strata, even in the absence

of whole-body tissue deficiencies. This may occur through elevated

rates of catabolism due to accumulating neurovascular pathology (i.e.,

cerebral amyloid angiopathy and arteriosclerosis) or inflammation or a

combination of both. Aging and conditions leading to BBB breakdown

may disturb the brain’s capacity to meet its nutritional requirements

through several mechanisms, including gapping of tight junctions of

BBB (endothelia) or BCSFB (cuboidal epithelia), cell surface trans-

porter dysfunction (i.e., solute carriers and receptor mediated tran-

scytosis damage), and mitochondrial dysfunction leading to loss of

energy potentials.103 BBB breakdown may cripple the brain’s capacity

to maintain nutrient concentrations to battle reactive oxygen species

(i.e., leaking of vitamin C from the CNS into periphery or damage to

SVCT at the choroid plexus)104 and support DNA methylation reac-

tions (one carbon metabolism).105,106 Defects in BBB function affect

notonlybrain glucosemetabolism107 and somemicronutrientsbut also

important fatty acids such as the transport of DHA to the brain108 via

MFSD2A.109

2.3 APOE4 and cerebral bioenergetics

Apolipoprotein E ε4 polymorphism (APOE4) is by far the strongest

genetic risk factor for late-onset AD.110 As its name suggests,

apolipoprotein E (ApoE) is a surface protein component of lipopro-

tein particles, and thus it is perhaps unsurprising that it affects several

metabolic functions. This encompasses ApoE isoform-specific alter-

ations ranging from cholesterol trafficking and efflux, intracellular lipid

storage, glucose uptake and utilization patterns, brain insulin signal-

ing, and mitochondrial function.110 These various APOE-associated

changes in cerebral (and peripheral) metabolism have been extensively

reviewed.111–115 APOE4 may affect BBB integrity before the onset of

cognitive decline through chronic unresolved inflammation,101 is asso-

ciated with presymptomatic brain glucose hypometabolism,116 and

may lower delivery of n-3 PUFAs to the brain prior to the onset of

dementia.108 Whether APOE4 affects the transport of ketones into the

brain is still not clear.

More recent studies have highlighted emerging areas of interest

regarding the effects of APOE4 on cerebral metabolism, particularly

in glial cells. Glial carbohydrate metabolism was shown to be a pri-

mary pathway associatedwith cognitive impairment andADpathology

by a comprehensive proteomics analysis.117 Although the effect of

APOE was muted in the study, several other publications highlight

important roles forAPOE inmodulating glucosemetabolism. For exam-

ple, APOE4-expressing astrocytes increase glycolytic flux relative to

APOE3 and APOE2 astrocytes.118 A follow-up translational study sug-

gests that this APOE4-associated increase in glycolysis in astrocytes
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YASSINE ET AL. 9

appears to be mirrored in whole-body metabolic measures of APOE4

mice as well as in the plasma metabolome and breath-based calorime-

try of young women carrying APOE4.119 Effects of APOE isoforms

on glial metabolism appear to also include microglia, as a recent

study showed that APOE4-expressing human iPSC-derived microglia

have lower rates of both oxygen consumption and glycolysis.120

Younger APOE4 carriers have higher brain uptake of DHA,121 sug-

gesting preference for PUFAs, possibly due to increased DHA

consumption.

Multiple studies also highlight a role for APOE in modulating the

accumulation and storage of intracellular lipids in astrocytes. For

example, the expression of APOE4 by astrocytes led to an increased

accumulation of lipid droplets in multiple model systems.122–124 Qi

et al. recently expanded upon these findings by similarly showing that

APOE4 leads to lipid accumulation in astrocytes and further suggested

that a decreased capacity of these astrocytes to buffer neuronal lipids

and degrade fatty acids via oxidation or other mechanisms may com-

promise metabolic support to neurons.125 Similarly, a recent study by

Rawat et al. highlighted the susceptibility of apoE4 protein aggregates

to decrease recycling and lipidating functions of ATP binding cassette

A1 (ABCA1).126 While there is strong evidence that FAO is impaired in

AD, particularly among APOE4 carriers, themechanism bywhich APOE

genotype contributes to bioenergetic deficits in AD remains to be fully

investigated. Studies show that APOE4 carriers affect the metabolism

of PUFAs,121,127 which could be due to their increased breakdown or

reduced transport into the brain.128 Deficits in maintaining adequate

brain bioenergetics in APOE4 carriers can also be attributed to FAO of

intracellular lipid pools.122 APOE4 carriers with dementia are unable

to adequately compensate energy generation through FAO.129 Mouse

models of human APOE show that acylcarnitine levels decline with age

in APOE4 mice, whereas APOE3 mice maintain adequate supplies and

APOE2 mice have elevated acylcarnitine levels in blood with age.130

In sum, these studies highlight APOE4-associated increases in intracel-

lular lipid accumulation, decreased cholesterol efflux, and incomplete

FAO, with some of thes changes appearing early in life and impacting

brain energymetabolism.

2.4 Gut microbiome dysbiosis and cerebral
bioenergetics

A key factor that determines nutrient absorption and metabolism

from dietary components are the trillions of microorganisms that

reside in the gut and the vast array of enzymes encoded in their

metagenomes, colloquially known as the gut microbiome. Diet and

nutritional status play a major role in the symbiotic relationship

between the gut microbial diversity and host metabolism. Nutri-

tional imbalance impacts both microbial communities in the gut and

host physiological functions including brain homeostasis that is heav-

ily dependent on gut-derived secondary metabolites, which include

neurotransmitters.131 The gut microbiota-derived secondary metabo-

lites exert their effects either locally or via systemic circulation as

stored energy reserves in external organs.132 Gut-brain signaling has

been widely studied, and one of the areas of interest linking the diges-

tive system with the brain is satiety and appetite regulation. However,

in the last decade, the focus has dramatically shifted towards a bet-

ter understanding of the microbiota-gut-brain relationship, which is

frequently referred to as the MGB axis.133 MGB represents a bidi-

rectional communication pathway mediated by microbiota and their

secondary derivatives. Gut microbes release a range of neuromodu-

latory metabolites, including γ-aminobutyric acid (GABA), dopamine,

serotonin, acetylcholine, trimethylamineoxide (TMAO) and short chain

fatty acids (SCFAs).134–136 Bacteria-derived neuromodulators enter

the brain either via afferent vagal nerve fibers that directly connect

the enteric nervous system (ENS) and central nervous system (CNS) or

cross the BBB from portal circulation.137,138

Age is a key factor that influences gut microbiome composition

and function. While normal health in adulthood is characterized by

a stable microbiome,139 late life changes in gut microbiome com-

position shifts toward less stable states. A persistent imbalance of

gut microbial communities, termed dysbiosis, has been reported in a

variety of neuropsychiatric and neurodegenerative disorders, includ-

ing AD, prompting the question of whether age-related microbiome

changes combinedwithdifferential gutmetabolites could contribute to

mitochondrial dysfunction linked to neuropsychiatric disorders.140–146

Mounting evidence also links an abnormal increase in specific enteric

microbes to a range of chronic late life inflammatory diseases with pri-

mary pathologies outside the GI, including CNS disorders.132,137 Many

neurological disorders are shown to be associated with microbiota-

associated GI symptoms and possibly stemming from altered gut

microbial diversity.

Microbiome-derived secondarymetabolitesmaycontribute tobrain

bioenergetic dysfunction during aging. Microbiota-derived SCFAs

including butyrate, acetate and propionate, are essential for nor-

mal brain health.147 Several studies have highlighted the importance

of SCFAs in understanding pathogenesis associated with multiple

neurodegenerative disorders, including AD.142,143 Although the pre-

cise mechanism of action of SCFAs on brain is still being explored,

mounting data suggest SCFAs are essential factors for the effec-

tive functioning of mitochondria. SCFAs are associated with the

mitochondrial function specifically with the ETC involved in ATP pro-

duction, oxygen consumption and membrane potential in the brain.

A recent study in germ-free mice demonstrated that gut micro-

biota and the acetate they produce are important contributors to

brain mitochondrial bioenergetics, particularly microglia function via

regulation of mitochondrial oxidative phosphorylation.148 SCFA con-

centrations are lower in CSF of AD participants, providing further

support that changes in microbiota metabolism may contribute to

brain energetic failure in AD.149 Conversely, TMAO, a gut metabolite

derived from microbial metabolism of dietary carnitine and choline,

has been shown to influence brain function. A combination of gut

dysbiosis and increased levels of TMAO is observed in anxiety and

cognitive deficits,150 and TMAO is reported to be elevated in the

CSF of dementia patients.151 TMAO also promotes vascular aging as

well as impairment of mitochondrial function and increased oxidative

stress.150 This evidence strongly suggests that gutmicrobiota and their
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10 YASSINE ET AL.

F IGURE 4 An illustration of how capturing information on environmental, genetic, systemic and brain risk factors that affect neuronal survival
and synaptic function can lead to personalized dietary and lifestyle recommendations. BBB, blood-brain barrier; CSF, cerebrospinal fluid

metabolites may play a role in aging and mitochondrial dysfunction

observed in AD.

3 EVIDENCE FOR TARGETING CEREBRAL
BIOENERGETICS DEFICITS IN AD WITH NUTRITION

The effect of diet on the brain is complex, modulated by several fac-

tors that may affect the transport and metabolism of nutrients making

them readily available to the brain. Novel modeling approaches such

as network analysis is needed in a much more diverse sample.152 This

network may vary by region, social, and cultural practices and includes

genetics (e.g., APOE4), vascular risk factors (hypertension, exposure to

air pollution), nutritional intake, diet patterns, or other lifestyle factors

such as social, cognitive, and physical activities. The complex interac-

tionof these factors onbrain energyhomeostasis andneuronal survival

has implications toward personalized recommendations, and is illus-

trated in Figure 4. Given this complexity, it is not surprising that most

dietary supplement interventions using a single or a few nutrients in

a single “average population” have been disappointing in their abil-

ity to slow cognitive decline or AD progression152 compared to the

effect of the major diet patterns on dementia risk seen in observa-

tional cohorts (Table 2). These issues notwithstanding, there remain

open questions of whether certain targeted nutrient interventions can

restore cerebral bioenergetics in populations selectedwith signs of dis-

turbed nutritional and cerebral bioenergetic dysfunction when guided

by selected biomarkers. Efforts to advance our understanding of the

role of cerebral bioenergetics in AD etiology will need to account for

the appearance and characteristic biology of its classic histopathology

including beta amyloid or tau perturbations the field associates with

AD.

3.1 Single or few nutrient trials

Some dietary supplements, B vitamins, n-3 PUFAs, and ketones have

shown preliminary promising effects on brain bioenergetics in the

aging brain. Closer examination of these nutrient trials identifies the

need for more targeted or personalized approaches and to define neu-

roprotective ranges of nutrients to enroll individuals outside this ben-

eficial range for intervention.153 We discuss here some encouraging

single or few nutrient interventions:

3.1.1 B1 vitamins

There is evidence linking abnormalities in thiamine (vitamin B1) avail-

ability and metabolism to the pathophysiology of AD through brain

bioenergetics. Thiamine-deficient humans with Wernicke Korsakoff

syndrome have significant neurofibrillary tangles.154,155 In mice, thi-

amine deficiency increases the phosphorylation of tau,156 and treat-

ment with benfotiamine diminishes phosphorylation of tau in at least

three different animal models of AD.157,158 These results stimulated a

single site blinded Phase 2a randomized placebo-controlled pilot trial

of benfotiamine to provide preliminary evidence of feasibility, safety,

and efficacy. The trial tested whether a 12-month treatment with

benfotiamine would delay clinical decline in amyloid positive patients

(ascertained with amyloid PET) with amnestic mild cognitive impair-

ment (MCI) (MMSE > = 26) or mild AD (26 >MMSE > 21) compared

to placebo.159 The primary clinical outcomewasADAssessment Scale-

Cognitive Subscale (ADAS-Cog), and secondary outcomes were the

clinical dementia rating (CDR) score and brain glucose uptake mea-

sured by FDG-PET. The trial showed that benfotiamine at a dose of

600 mg per day is safe in patients with early AD. The treatment
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YASSINE ET AL. 11

TABLE 2 Dietary and nutrient biomarker patterns associated with cognitive function and dementia risk

Diet or biomarker pattern Micro/macronutrient emphasis Dementia risk, cognitive outcomes and biomarkers

MINDdiet173,253 Higher intake of vitamin E, folate, flavonoids,

carotenoids, dietary fiber, monounsaturated fats,

and lower intake of saturated and trans fatty acids

Lower incident AD and cognitive decline

DASH diet254 Higher intake in potassium, magnesium, fiber,

calcium, monounsaturated fats, and protein; low

in saturated fats, cholesterol, and sodium

Less cognitive decline and lower incident AD255

MeDi256 High intake of folate, vitamin E, carotenoids,

flavonoids, and other antioxidants, dietary fiber,

omega-3 fatty acids; lower intake of saturated

fatty acids

Lower incident AD257

MMKD174 Low carbohydrate (5%–10%), high fat (60%–65%)

and 30% protein. LikeMeDi guidelines that

emphasizes protein sources low in saturated fat

(fish, leanmeats), healthy fats, fruits and

vegetables, whole grains, and 1 glass of wine per

day

Lower indication of AD pathology (higher CSF abet42 and

lower CSF tau); Increased cerebral perfusion and

increased cerebral ketone body uptake

(11C-acetoacetate PET) followingMMKD

Nutrient biomarker pattern

Oregon Brain Aging Study258
Higher blood levels of B1, B2, B6, folate, B12, C, D, E,

omega-3 fatty acids, carotenoids (lutein and

zeaxanthin) and lower levels of trans fatty acids

Superior cognitive function, less whitematter lesions and

higher total brain volume

Nutrient biomarker pattern

Three-City study259
Higher blood levels of vitamin D, carotenoids, and

polyunsaturated fatty acids and lower levels of

saturated fats associatedwith less risk of

dementia

Lower incident dementia

Nutritional Risk Index

Multi-domain Alzheimer

prevention trial260

Higher blood levels of vitamin D and omega-3 fatty

acids and lower levels of homocysteine

Participants with optimum nutritional status had superior

cognitive performance

Abbreviations: DASH, dietary approaches to stop hypertension; MeDi, mediterranean style diet; MIND, mediterranean-DASH diet intervention for

neurodegenerative delay;MMKD,modifiedmediterranean ketogenic diet.

delivery was efficacious as shown by a 161-fold mean increase in

blood thiamine. The change in the primary outcome did not reach sta-

tistical significance, and there were signals that secondary outcomes

were improving. These encouraging preliminary findings support vali-

dation in targeted/personalized interventions with responsive clinical

outcomes.

3.1.2 Vitamin B12, vitamin B6, and folate

A systematic review of 21 trials explored the preventive efficacy of

vitamin B12, vitamin B6, or folic acid alone or in combination in any

formon cognitive decline of patientswithmild cognitive impairment or

elderly adults without cognitive impairment.160 This analysis demon-

strated that vitamin B supplements significantly lowered the levels of

serum homocysteine levels and prevented the decline of global cogni-

tive function, but did not affect other cognitive domains. Nevertheless,

the effect sizes for those treated with vitamin B supplements com-

pared to placebo were modest. Like B1, targeted and well-designed

randomized controlled trial (RCT) in participants with high baseline

homocysteine levels and responsive cognitive outcomes can clarify

whether they have preventive efficacy.

3.1.3 PUFAs

Brain PUFAs have important roles in brain bioenergetics and synaptic

functions, but PUFA supplementation clinical trials have not succeeded

in showing benefit on cognition, despite several observational cohorts

linking higher n-3 PUFA intake or blood levels with better cogni-

tion or lower AD incidence.153,161 Brain autopsy studies in APOE4

carriers with dementia demonstrate the activation of pathways that

increase the breakdown of brain PUFAs (e.g., via calcium-dependent

phospholipase A2 [cPLA2] activation162) and PUFAs with numerous

double-bonds are more susceptible to lipid peroxidation, thereby con-

tributing to ROS generation. However, there might be a role for PUFA

supplementation in AD prevention for vulnerable populations. Using

11-CDHAPET imaging, theAPOE4 brain appears to extractmoreDHA

from blood than the non-APOE4 brain several decades before any evi-

dence of cognitive decline.121 This greater dependence on systemic

DHA as a brain substrate in APOE4 poses vulnerability to lower DHA

intake, since blood DHA levels are largely determined by dietary con-

sumption. As the APOE4 brain ages with a lower BBB function and the

accompanied lower ability to extract DHA from the circulation,108 the

ability of dietaryDHA intake to reverseADpathology appears towane.

The field awaits more personalized interventions (e.g., younger APOE4
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12 YASSINE ET AL.

carriers without high n-3 PUFA intake and prior to the onset of clin-

ical disease) with high dose and long term PUFA supplementation to

address this question.163

3.1.4 Ketones

Given the difficulty in restoring disrupted brain glucose metabolism,

another therapeutic strategy involves improving brain energy

metabolism with ketones in MCI or AD. This question was addressed

with a ketogenic medium chain triglyceride (kMCT) supplement. The

largest investigation to date included 152 older participants with

mild to moderate AD, followed-up over 90 days with 20 g/day of

kMCT (tricaprylin) supplementation. A significant improvement in

the ADAS-Cog score was observed only in APOE4 non-carriers.164

A higher dose of kMCT (42 g/day of tricaprylin) improved cognitive

stability in mild-moderate AD in 20 participants who underwent a

6-month double-blinded, randomized, placebo-controlled cross-over

study with a 6-month open label phase.165 In older adults with MCI,

Fortier et al. showed that 30 g of kMCT supplementation per day

over a 6-month period significantly improved cognitive function.166

At baseline, the brain glucose deficit was about 10%, which was

reduced to about 7% by ketones from the kMCT.166 Post-intervention,

scores for episodic memory, executive function, and language were

all significantly improved in the kMCT group only.167 These cognitive

improvements were directly associated with increased brain ketone

uptake and/or increased plasma ketones in the kMCT group. However,

there were no changes in brain FDG uptake, cortical thickness, volume

of brain regions, or brain blood flow. Analysis of diffusion and PET

imaging before and at the end of the intervention period showed that

ketones were actively utilized by multiple white matter tracts in the

kMCT group and that the uptake of ketones in these tractswas directly

related to improvement in processing speed168 and attention.169

A double-blind, randomized, placebo-controlled crossover study

of kMCT was undertaken in 53 mild to moderate AD patients and

showed cognitive improvements in the ADAS-Cog-C among APOE4

non-carriers.170 In a recent systematic review of RCTs with ketogenic

therapy in AD, an APOE4 genotype treatment effect was noted with

APOE4 negative participants having a better treatment response than

those who were APOE4 positive.171 In addition to AD, impaired brain

glucose metabolism is a feature of other neurodegenerative disorders

including frontotemporal dementia.172 Large randomized controlled

trials with long-term follow-up and appropriate clinical and biological

outcomes (including plasma, CSF, or brain metabolism biomarkers)

are needed to validate the outcomes and long-term acceptability of

ketone interventions in MCI or AD. The effect of APOE4 on ketone

brain uptake requires further studies.

3.2 Diet patterns and whole diet interventions

While specific nutrients uniquely impact bioenergetics pathways

potentially leading to AD, these nutrients are contained in foods and

consumed together within a diet. Moreover, they may have syner-

gistic (or at least additive) effects on metabolic pathways, so that

their co-consumption within a diet may potentiate benefits (or harms)

in relation to brain health. Thus, dietary patterns are tremendously

important to consider when studying nutrition and the brain. There

is emerging evidence from human neuroimaging studies that diet pat-

terns overall may influence cerebral bioenergetics, possibly as early as

middle adulthood, prior to any effect onotherADbiomarkers andbrain

structural changes.

TheMediterranean diet (MeDi), DASH (Dietary Approaches to Stop

Hypertension), and theMIND (Mind-DASH Intervention for Neurode-

generative Delay) are each associated with less cognitive decline and

dementia incidence (Table 2). These diets are characterized by high

intake of vegetables, fruits, fish, legumes, and less processed foods, red

meat, and confectionary foods. Although there are similarities among

these dietary patterns (fish and vegetable intake), there are also differ-

ences such as berries and emphasis of dark leafy greens in the MIND

and olive oil (monounsaturated fatty acids) as the main source of fat

in both the MeDi and MIND.173 A modified Mediterranean Ketogenic

Diet that requires low carbohydrate and high mono and polyunsatu-

rated fat intake and lower saturated fat intakehasbeenassociatedwith

lower signs of AD pathology and increases in cerebral blood flow in

early interventions.174

Other studies have identified dietary patterns or nutrient

biomarker patterns associated with less brain atrophy and white

matter lesions,175 but the estimated effects on outcomes related to

cerebral bioenergetics such as arterial spin labeling derived cerebral

blood flow, FDG PET and BOLD imaging have been limited. Measuring

brain glucosemetabolismwith FDGPET as a proxy of neuronal activity,

a few longitudinal neuroimaging studies of cognitively intake adults

(aged 30–60 years) with other risk factors for AD suggested that

healthy diets, such as the Mediterranean diet, or healthy nutrient

patterns, influence brain glucose metabolism in mid-to-late adulthood.

For example, an analysis of 70 participants from the cohort found that

lower adherence to aMediterranean diet was associated with reduced

FDG-PET and a faster rate of FDG decline over 3 years in AD-affected

regions (3.3% per year decline in those with lower adherence to a

Mediterranean diet [i.e., scored 0–4 over a total of 9 possible points],

versus 0.3% per year in those with higher adherence [score 5–9]).176

This reported decrease in glucose metabolism in persons with lower

adherence toMediterraneandiet paralleled significant 11C-Pittsburgh

compound B (PIB) increases, while volumetric MRI results were unaf-

fected by treatment. In 52 participants from the same cohort study, a

healthy nutrient pattern combining unsaturated fats; vitamins A, B12,

C, D, and E; zinc; carotenoids; and fiber, was associated with increased

FDG-PET glucosemetabolism177 providing some evidence of potential

key nutrients influencing brain glucose metabolism. In fact, there are

emerging studies of the impact of antioxidant-rich fruits and vegeta-

bles, n-3 PUFA and low-glycemic index carbohydrates,178 zinc,179 fish

oil supplementation rich in n-3 PUFA,180 vitamins B12, E, D, PUFA,

antioxidants and fibers,177 and multi-nutrient supplements181,182on

FDG PET derived cerebral glucose metabolism. There are also diet

patterns such a Mediterranean-type diet that have been associated
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YASSINE ET AL. 13

with beneficial cerebral metabolism profiles in both cross-sectional183

and longitudinal176 studies.

3.3 Emerging targets for cerebral bioenergetic
restoration

There are emerging bioenergetic targets that have yet to be fully

explored in human trials, but preliminary evidence is promising. These

mechanisms include targeting FAO, the gutmicrobiome, andepigenetic

modifications to restore cerebral bioenergetics in AD.

3.3.1 Acetyl-L-carnitine

Acetyl-L-carnitine is a mitochondrial bioenergetic substrate that may

improve brain functions through FAO, but clinical trial findings are

inconsistent. A small-scale study placebo-controlled randomized trial

(RCT) of acetyl-l-carnitine in 36 AD participants showed some trends

in improvement in short-term memory.184 Another RCT of acetyl-L-

carnitine in 130 clinically diagnosed AD patients showed that partic-

ipants treated with acetyl-L-carnitine had significantly better scores

on tests that assessed verbal abilities and verbal memory as well as

attention.185 However, another RCT of acetyl-L-carnitine among early

onset AD cases45–60,62–66 did not achieve its primary outcome of cog-

nitive decline.186 Others have explored acetyl-L-carnitine as part of

nutritional cocktail showing some efficacy on cognitive outcomes,187

but these studies lack efficacy biomarkers other than supporting over-

all bioenergetic processes in the brain. Given the uncertainty with

acetyl-L-carnitine doses, brain delivery and with the short duration

of these preliminary trials, the potential therapeutic effects of target-

ing FAO via L-carnitine remain unknown. Whether acetyl-L-carnitine

is serving as a direct supplement for FAO or is being converted into

ketone bodies in the periphery and then supplied to the brain also

remains unknown.

3.3.2 Nicotinamide adenine dinucleotide (NAD+)
precursors

NAD is a coenzyme for multiple metabolic reactions, including glycol-

ysis, the electron transport chain and sirtuin activity.188 The ratio of

reduced (NADH) to oxidized NAD (NAD+) increases with aging.188

It has been postulated that NAD+ boosters may improve mito-

chondrial metabolism during aging. Two major NAD+ precursors

are nicotinamide riboside (NR) and nicotinic mononucleotide (NMN)

that within cells can be converted to NAD+ and may raise NAD+.

Some of the animal studies with NAD+ supplements have shown

promise with aging188 and reducing microglial inflammation and cellu-

lar senescence,189 although in the largest mouse span extension study,

Intervention Testing Program (ITP), NAD+ precursors did not extend

lifespan.190 Thechallengewith these supplements is the lackof efficacy

biomarkers at the cellular level, their unclear brain delivery, and very

limited data for cognitive outcomes, although several smaller trials are

in progress.191

3.3.3 Microbial metabolites and probiotics

Direct supplementation of secondary metabolites or stimulation of

their production by providing either a specific medication, appropriate

bacterial strains (i.e., probiotics), or microbiota-enhancing diet fea-

tures (prebiotics), are an emerging opportunity for a wide range of

disorders, including AD. Increases in SCFA production can be achieved

by direct supplementation, or via high fiber supplementation.192 In

general, in vitro experiments have shown SCFAs inhibits AD-related

Aβ aggregation.143 However, SCFA supplementation in preclinical

animal models of neurodegenerative diseases has yielded conflict-

ing results. Butyrate supplementation inhibits neuroinflammation and

helpsmaintainBBB integrity inmice,193 possibly through improvement

of mitochondrial function by reducing oxidative stress and increas-

ing oxidative phosphorylation.194 However, in a pre-clinical model of

Parkinson’s disease, microbiomes from PD patients and propionate

led to enhanced motor dysfunction.195 Synbiotics, defined as combi-

nations of probiotics and prebiotics mixed in appropriate proportions

have been shown to ameliorate a host of CNS disorder patholo-

gies. Lactobacillus salivarius, a probiotic when used in combination

with prebiotics has engendered enhanced mitochondrial function in

6-hydroxydopamine (6-OHDA)-induced PD rats.196 Similarly, Lacto-

bacillus paracasei, another probiotic belonging to the same genus and

a prebiotic XOS, when used as synbiotics, is shown to attenuate

mitochondrial dysfunction and prevent hippocampal oxidative stress

and apoptosis.197 However, Akkermansia muciniphila as a standalone

probiotic supplement has been shown to produce increased CSF

nicotinamide levels inmousemodel of amyotrophic lateral sclerosis.198

3.3.4 Mitochondrial complex IV

Complex IV is part of the electron transport chain and this complex

becomes negatively affected in AD. Importantly, Complex IV is the site

of molecular oxygen consumption. Interestingly, studies with dietary

creatine,199 and also other compounds,200 have shown promise to

reverseComplex IVdeficits in transgenicmousemodels. These findings

become important for therapeutically targeting aging and age-related

diseases, such as AD and obesity with potential nutritional interven-

tions that may slow or reverse these processes. In fact, key roles have

been found for Complex IV dysfunction during aging that have been

linked to age-dependent obesity201 and associated inflammatory pro-

cesses. Surprisingly, there are currently no FDA-approved mitochon-

drial medicines and only one European Medicines Agency approved

drug Idebenone (Raxone) is available for treating mitochondrial dys-

function in Leber’s hereditary optic neuropathy (LHON). However,

so-called mito cocktails containing vitamins and minerals, mitochon-

drial transfusions, and druggable mitochondrial targets are now being

aggressively explored.
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14 YASSINE ET AL.

4 FUTURE DIRECTIONS TO GUIDE NUTRITION
INTERVENTIONS TARGETING CEREBRAL
BIOENERGETICS

As the aging brain and AD risk factors such as APOE4 adversely

affect the delivery of nutrients to the brain even before the onset

of dementia,108,121 certain nutritional interventions during mid-life

may prove more effective if started before the onset of clinical symp-

toms, while others may work later in the disease process. Ultimately,

improved insulin sensitivity seems to have an important role in reduc-

ing the risk of AD. A better understanding of brain energy utilization

pathways throughout the lifespan and in both healthy aging and dis-

ease states can inform personalized nutrition trials aimed at testing

the hypothesis that providing adequate energy to the dementia-at-risk

brain limits the progression to neurodegenerative diseases such as AD.

Here, brain bioenergetics biomarkers can have key roles in guiding the

efficiency of supplements and nutrients. We provide here examples of

promising molecular pathways, modeling of dietary patterns, imaging

andbloodbiomarkers, and targetpopulations that canguidenutritional

interventions. There aremajor research and funding gaps that exist and

therefore the following recommendations aremade.

4.1 Preclinical studies of chronic inflammation
and cerebral bioenergetics

Given the coupling of disrupted brain energy utilization with chronic

inflammation, future studies targeting brain inflammation pathways

promise to restore brain energy utilization and limit oxidative dam-

age that leads to synaptic loss and neurodegeneration. For example,

repairing the BBB can enhance brain glucose and nutrient uptake, but

this remains to be determined. One such target involves cyclophilin

A—matrix metalloproteinase 9 (CypA–MMP9) pathway that is acti-

vated in APOE4 carriers and associated with BBB integrity loss and

cognitive decline.101,99 Another example involves the increase acti-

vation of cPLA2 that promotes greater breakdown of neuronal fatty

acids, leading to neuroinflammation and oxidative stress. Inhibiting

cPLA2 activity may limit the oxidation of brain PUFAs, and shift brain

energy utilization toward alternative sources of energy production

and repair the BBB.202 Moreover, targeting systemic inflammation

in the periphery may hold promise in restoring cerebral bioenerget-

ics in the brain, as a recent study demonstrated that blockade of

prostaglandin E2 signaling in peripheral myeloid cells was sufficient to

restore cognition in agedmice.203 Another aspect implicates targeting

enzymes or other indirect processes involved in cerebral lipid stor-

age, particularly in glia, to support neuronal energetics. For example,

depletion of lipoprotein lipase in microglia increased the accumula-

tion of lipid droplets, decreased cholesterol efflux, decreased PPAR

signaling, and increased expression of inflammatory markers suggest-

ing that microglial LPL deficiency could play a role in dysregulated lipid

metabolism,204 and conversely facilitating cholesterol and lipid efflux

via ABCA1126 or ABCA7222 ameliorates AD pathology and inflamma-

tion. Several other pathways involving oxidative stress, inflammatory

signaling, insulin sensitivity, and lipidmetabolism influencebrainbioen-

ergetics and still need to be explored. It will be crucial to elucidate

how these pathways complement nutrition-based interventions in

AD.

4.2 Epigenetic and translational network
malfunctions

Network malfunctions during AD or cognitive aging such as the

destabilization of firing rates, synaptic dysfunction, or learning and

memory deficits205–207 are accompanied by metabolic malfunctions

such as decreased oxygen and glucose consumption, dysregulated his-

tone acetylation, as well as altered gene expression profiles.208–212

Conversely, interventions aimed at restoring glucose metabolism, like

lifestyle paradigms to enhance exercise and mental stimulation, not

only significantly improve cognitive dysfunctions,213 but also reinstate

chromatin and transcriptional plasticity.214,215 What is more, several

bioactive dietary components are known to influence cognitive perfor-

mance through the regulation of cellular physiology and function, via

the intermediate of different epigenetic states.216,217 For instance, the

reduction in vitaminAobserved inADpatients has been linked to aber-

rantHAT-dependenthistoneacetylationpatterns, subsequent learning

and memory deficits, as well as accumulations of Aβ aggregates.218,219

In addition, many other nutrients such as folate, B, C, D, and E vita-

mins,methionine, turmeric, catechins, and betaine range among potent

dietary epigenetic mediators affecting DNA methylation and histone

acetylation.220,221 Another example of how nutrients can affect brain

energy utilization through epigenetic modifications is provided with

the B1 vitamin thiamin. The complexity of how thiamine maintains

brain function has been studied for decades, but new technologies

suggest that the field exponentially underestimated its roles. Future

research needs to address how thiamine dependent enzymes regu-

late cell function through hundreds of post-translational modifications

under conditions that do not alter ATP. Experiments must address the

role of thiamine dependent enzymes in the nucleus and their role in

epigenetic modifications.

4.3 Biomarkers

One of the major challenges in nutrition and cognition research is

patient heterogeneity that associates with a large variability in the risk

of cognitive decline and dementia incidence. Focusing on individuals

with dementia risk factors223 but before the onset of clinical symptoms

is of great interest. Cost-effective biomarkers to easily identify demen-

tia risk factors in diverse populations and enrich future studies with

these participants are urgently needed. While amyloid and tau-based

biomarkers have been useful in identifying evolving AD pathologywith

increases in amyloid deposition and tau hyperphosphorylation in the

brain, to date, there are no validated biomarkers available that can

provide information about cerebral bioenergetic changes that precede

or follow amyloid and tau changes in the brain. As such, there is a
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YASSINE ET AL. 15

TABLE 3 Promising bioenergetic and nutritional biomarkers and their implications for brain functions

Biomarker Implications for nutritional andmetabolic interventions

Fluid biomarkers

Omega-3 index Lower blood omega-3 index is associated with increased dementia risk.161,261,262 Screen vulnerable populations (with low

blood omega-3 index) for LC n-3 PUFA supplementation before the onset of AD dementia.

DHA/AA ratio A lower plasma or CSFDHA/AA ratio in AD andAPOE4127,263 may reflect activation of lipid catabolism pathways and serve as

a biomarker for therapies (such as cPLA2 inhibitors).162

Homocysteine An increase in plasma homocysteine is associatedwith increased risk of AD.264–266 Reducing homocysteine using vitamin B

complexesmay be beneficial to reducing AD risk before the onset of clinical dementia.

25-OH vitamin D Screen vulnerable populations (with 25-OH-D deficiency [<25 nmol/L]) or insufficiency [25–50 nmol/L]) for vitamin D

supplementation.267,268

Acylcarnitines Lower levels ACC found in AD serum,269 as a biomarker of dysfunctional FAO.

sPDGFRβ CSF sPDGFRβ levels is a marker of pericyte function, lower in APOE4 and those with lower cognitive function, independently

of CSF amyloid beta 42.101 Interventions that restore pericyte integrity may improve brain nutrient delivery.

SCFA SCFA concentrations are lower in CSF of AD participants and aremarkers of brain energetic failure in AD.149 SCFA levels can

guide screening and validation of multitudes of pre- and probiotic co-culture combinations.

Urinary DCA Biomarker of unsaturated fatty acids oxidative damage.270 Urine DCAs can help select individuals with oxidative damage and

guide antioxidant therapeutics.

Imaging biomarkers

DHAPET scans APOE4 carriers may have a greater vulnerability to omega-3 deficiency before onset of clinical disease.121 DHAPET scan can

help identify vulnerable groups and guide supplementation interventions and selection of cognitive outcomes.

Ketone PET scans Ketone PET guides the uptake of ketones in brain regions directly related to improvements in cognitive outcomes166

including processing speed168 and attention.169 Ketone PET scans can help identify individuals responsive to a ketogenic

intervention and selection of cognitive outcomes.

FDG - H2
15O PET scans FDG-PET is a presymptomatic marker of brain hypometabolism and AD risk. Dietary behaviors may affect regional cerebral

blood flowwhichmay be used as an efficacy endpoint for appropriate initial trial fine tuning.271

Infra-red spectroscopy The effects of different interventions (caffeine, wine and tea polyphenols such as resveratrol or epigallocatechin gallate,

creatine, DHA-rich fish oil) in infra-red spectroscopymarkers may provide surrogate end points in proof-of-concept

nutritional trials.272–277

MR proton or

phosphorus

spectroscopy

The effect of potential interventions with precursors of brain neurotransmitters important for brainmetabolism such as

choline or citicholine that are derived from diet may be directly measured in the brain usingMR spectroscopy

approaches.278,279

MRI CBV Cerebral blood volume has been enhanced in concert with improved cognitive performance in the hippocampal dentate gyrus

after a flavanol intervention. CBV can be used as preliminary efficacy target.280

Structural connectivity

MRI DTI

The effect of potential interventions with a variety of nutrients (ω3 andω6,ω6, vitamin E, different lipids236,281) and dietary

patterns such as theMeDi282 may be estimatedwith structural connectivity measures.

Functional connectivity

fMRI

The effects of potential interventions236 including ketones,169 MUFA, SFA, n-3 and n-6 PUFAs,283 B vitamins, vitamin E,

carotenoid, carotene and lycopene,283 resveratrol,284,285 cholesterol related lipids,286 beetroot juice287 can be captured

with functional connectivity neuroimaging techniques.

MRI DCE DCEMRI can define BBB integrity and is lower with APOE4 and AD.95 Interventions that restore BBB integrity may improve

brain nutrient uptake andmetabolism.

Abbreviations: AA, Arachidonic Acid, ACC, Acylcarnitines; DHA, Docosahexaenoic acid; CBV, cerebral blood volume; CSF, cerebrospinal fluid; cPLA2,

Calcium-dependent phospholipase A2; DCA, Dicarboxylic Acid; DCE, Dynamic contrast enhancement; DTI, diffusor tensor imaging; FAO, fatty acid oxida-

tions; FDG, Fluorodeoxyglucose; PDGFRβ, soluble platelet-derived growth factor receptor β; SCFA, short chain fatty acids.BBB, blood-brain barrier; MUFA,

monounsaturated fatty acids; SFA, saturated fatty acids; PUFAs, polyunsaturated fatty acids; MeDi, mediterranean style diet;

need for validated diagnostic and prognostic biomarkers of cerebral

bioenergetics failure that predict future cognitive decline in AD and

indicate cerebral bioenergetic changes that correspond with disease

progression in AD.We summarize promising nutritional andmetabolic

biomarkers in Table 3. The pathogenesis in AD begins decades before

the onset of clinical symptoms and, among ε4-carriers, bioenergetic
changes can be detected prior to amyloid deposition in the brain.

As such, biomarkers that can detect APOE genotype effects on brain

bioenergetics, particularly in conjunction to nutritional status will be

extremely valuable.

4.3.1 Blood, urinary, and CSF based biomarkers

Lipidomics and metabolomics provide an unprecedented opportu-

nity to map the multiple biological system failures occurring in
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16 YASSINE ET AL.

dementia/AD. However, these methods are limited by intrinsically

large heterogeneity (i.e., varying over time, across sex, according to

exposures and disease status), which hampers reliability and repro-

ducibility of measurements and replicability of findings. Most studies

have used targeted metabolomics leveraging a specific platform, and

comparability with findings obtained with a different platform is lim-

ited. Moreover, gains in sensitivity and reproducibility through using

targeted metabolomic approaches must ignore some parts of the

metabolome and, therefore, do not capture the system globally.224

Once validated, candidates resulting from lipidomic and metabolomic

screens can help model brain mitochondrial functions in relation to

cognitive decline and neurodegeneration. Careful longitudinal studies

with cognitive and imaging outcomeswill help validate the information

fromthesebiomarkers. Theymayalso assist as surrogatebiomarkers of

dietary or other interventions aimed at targeting lipid metabolism and

bioenergetics in aging and inAD. There are several biomarkers that can

provide insight direct or indirect evidence of brain energy metabolism.

For example, brain and blood acylcarnitines could help identify the

role of FAO deficiencies in AD pathogenesis, particularly among ε4
carriers before the onset of dementia. Lipidomics and metabolomics

have further identified lower Krebs cycle components (succinate and

glutamate) and higher levels of oxidized dicarboxylic acids as evi-

dence of abnormalmitochondrial stress in early and establishedAD.225

Isoprostanes formed by free-radical-mediated peroxidation of PUFAs

in response to inflammation are AD biomarkers,226 though studies

associate them with other dementias.227 Novel metabolomic stud-

ies can reveal several potential AD biomarkers in urine, including

DCAs and lysophospholipids.228 The extensive loss of brain tissue in

AD may alter urinary lipid-derived metabolites, tested against cogni-

tive performance, CSF, and imaging biomarkers.229 Another promis-

ing biomarker includes the platelet-derived growth factor receptor-β
(PDGFRβ), that is expressed in the brain by vascular mural cells-

brain capillary pericytes and arterial vascular smooth muscle cells.

BBB disruption and increased permeability positively correlate with

elevated levels of soluble PDGFRβ in CSF of patients with mild

dementia.230

4.3.2 Neuroimaging biomarkers

The use of neuroimaging tools in nutritional research has increased

substantially over the past 2 decades. However, this is the case mostly

for structural imaging studies,175,231–234 while investigations in nutri-

tion research using functional imaging approaches such as the above

that bring us closer to cerebral metabolism and bioenergetics has

been relativelymore limited. Additionally, notmany functional imaging

studies havebeenperformed inelderly at risk for cognitivedecline indi-

viduals. Furthermore, most such studies have been of relatively limited

power and mainly cross-sectional while multiple other methodological

limitations are not uncommon.235 Addressing such limitations235,236

in future larger and prospective studies in appropriate middle aged

or elderly populations may considerably enhance our understanding

of the effects of nutrition in brain energy metabolism. While imag-

ing brain glucose uptake provided insights on the reduced glucose

uptake that associate with neurodegeneration, imaging ketone, and

fatty acid uptake121,237 may provide insights into early change in

brain lipid remodeling occurring decades before the onset of cog-

nitive decline and likely influenced by the diet. As improved MR

spectroscopy techniques are being developed nutritional neuroimag-

ing may help us better comprehend the effects of diet in a variety

of additional neurotransmitters. As new PET radiotracers are devel-

oped, nutritional effects in additional mechanisms affecting brain

bioenergetics including inflammation, oxidative stress, etc., will be

better understood. At the same time, different imaging modalities

may have a unique explanatory power relative to each other and the

prospect of the simultaneous inclusion of multiple imaging outcome

measures may provide us with deeper understanding of nutritional

effects in brain metabolism. We are in an era of impressive expan-

sion of the list of biological specimens derived nutrient biomarkers and

of impressive technological advances of all neuroimaging techniques.

A parallel progress of analytical methods could bring us closer to a

more precision medicine, personalized-type understanding153 of the

nutrition-cerebral metabolism relation.

4.4 Microbiota sampling in human studies

The need for novel alternatives for early diagnosis, prevention, and

treatment aimed to restore cerebral bioenergetic dysfunction in

aging and AD cannot be overstated. Microbiome-based treatments to

reverse mitochondrial dysfunction are likely to be validated for use

in the near foreseeable future. Although it is important to recognize

the need for further investigation of microbiome-based interventions,

current evidence-based assessments demonstrate an efficacious and

promising outcome post-treatment in other disease conditions in addi-

tion to AD. However, longitudinal clinical studies on human blood

and stool metabolites and their link to neuropsychiatric disorders and

cognitive function would further establish the benefits of this novel

mode of treatment regime. Stool sampling, which is a non-invasive,

cost-effective biomarker assessment method, when combined with

in depth target-based, bioenergetic pathway screening is likely to

provide data on selective biomarkers to consider for future clinical

trials. For example, delineating homo- and heterofermentative Lacto-

bacillus spp and their synergistic association with other probiotics like

Bifidobacterium spp may offer a better understanding of the probi-

otic mutualism for effective drug design. This is particularly important

in deciphering and identifying the right prebiotics, probiotics and

postbiotics that positively influence cerebral bioenergetics. Preclinical

studies have established SCFAs as important contributors to cerebral

bioenergetics. Therefore, future studies involving screening and val-

idation of multitudes of pre- and probiotic co-culture combinations

that produce postbiotics with the greatest potential to restore bioen-

ergetic homeostasis are likely to yield best-in-class microbiome-based

treatments.
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YASSINE ET AL. 17

5 CONCLUSIONS

AD represents a complex disease with cell-specific energy failure

affected by nutrient availability early in the preclinical disease phases

and impacting nutrient brain delivery and metabolism later as the dis-

ease progresses. Many questions remain on the individual cell-specific

metabolic changes that contribute to neuronal bioenergetics failures.

Such mechanistic studies are important to design targeted therapeu-

tics. One can speculate that drugs or supplements that can better

support astroglial mitochondria FAO and spare neuronal mitochondria

might be advantageous. Basic research into mechanisms of impaired

FAO could lead to novel drugs that shift metabolism away for oxidative

or glycolytic stress. The integrated bioenergetic system of astrocytes,

pericytes and endothelial cells has direct effects on vascular blood

flow and BBB functions. Maintaining BBB integrity is a highly regu-

lated and metabolically demanding task that appears to fail early in

AD, particularly amongAPOE4 carriers. Since BBB function has amajor

impact on nutrient brain delivery, understanding the mechanisms that

restore cerebral bioenergetics promise to enhance the role of nutri-

tional interventions on brain functions. As the nutrition field moves

further toward personalized medicine, single or a combination of a

few nutrients may still have a role in AD prevention when targeted

to vulnerable populations and guided by validated biomarkers includ-

ing the microbiome. Current efforts are ongoing to explore potential

effects of dietary pattern interventions such as the MIND trial,173 the

BEAT-AD trial of amodified ketogenic diet (NCT03472664), theMulti-

cultural HealthDiet (MHD) an anti-inflammatory diet (NCT03240406)

and multiple World Wide FINGER initiatives (where dietary patterns

are considered within the framework of multidomain lifestyle inter-

ventions). Such efforts need to be expanded and supplemented by

parallel biomarker investigations toward aiding in better understand-

ing of dietary pattern effects in brain bioenergetics. It will also be

important to design and implement these nutritional interventions

in ethno-racially diverse populations to fully explore cerebral bioen-

ergetics as a viable target for the prevention of cognitive decline

and dementia.
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252. Soares JZ, Valeur J, Šaltytė Benth J, et al. Vitamin D in Alzheimer’s

disease: low levels in cerebrospinal fluid despite normal amounts

in serum. J Alzheimers Dis. 2022;86(3):1301-1314. doi:10.3233/jad-
215536

253. Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cogni-

tive decline with aging. Alzheimers Dement. 2015;11(9):1015-1022.
doi:10.1016/j.jalz.2015.04.011

254. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the

effects of dietary patterns on blood pressure. DASH collaborative

research group. N Engl J Med. 1997;336(16):1117-1124. doi:10.
1056/NEJM199704173361601

255. van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de

Rest O. The Mediterranean, dietary approaches to stop hyperten-

sion (DASH), and Mediterranean-DASH intervention for neurode-

generative delay (MIND) diets are associated with less cognitive

decline and a lower risk of Alzheimer’s disease-a review. Adv Nutr.
2019;10(6):1040-1065. doi:10.1093/advances/nmz054

256. PanagiotakosDB, TzimaN, Pitsavos C, et al. The association between

adherence to the Mediterranean diet and fasting indices of glucose

homoeostasis: the ATTICA Study. J Am Coll Nutr. 2007;26(1):32-38.
doi:10.1080/07315724.2007.10719583

257. Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA.

Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol.
2006;59(6):912-921. doi:10.1002/ana.20854

258. Bowman GL, Silbert LC, Howieson D, et al. Nutrient biomarker pat-

terns, cognitive function, andMRImeasures of brain aging.Neurology.
2012;78(4):241-249. doi:10.1212/WNL.0b013e3182436598

259. AmadieuC, Lefevre-Arbogast S, Delcourt C, et al. Nutrient biomarker

patterns and long-term risk of dementia in older adults. Alzheimers
Dement. 2017;13(10):1125-1132. doi:10.1016/j.jalz.2017.01.025

260. Bowman GL, Dodge HH, Guyonnet S, et al. A blood-based nutri-

tional risk index explains cognitive enhancement and decline in the

multidomain Alzheimer prevention trial. Alzheimers Dement (N Y).
2019;5:953-963. doi:10.1016/j.trci.2019.11.004

261. Pottala JV, YaffeK, Robinson JG, EspelandMA,WallaceR,HarrisWS.

Higher RBC EPA+DHA corresponds with larger total brain and hip-

pocampal volumes: wHIMS-MRI study. Neurology. 2014;82(5):435-
442. doi:10.1212/wnl.0000000000000080

262. Ammann EM, Pottala JV, Robinson JG, Espeland MA, Harris WS.

Erythrocyte omega-3 fatty acids are inversely associated with inci-

dent dementia: secondary analyses of longitudinal data from the

Women’s Health Initiative Memory Study (WHIMS). Prostaglandins
Leukot Essent Fatty Acids. 2017;121:68-75. doi:10.1016/j.plefa.2017.
06.006

263. Abdullah L, Evans JE, Emmerich T, et al. APOE epsilon4 specific

imbalance of arachidonic acid and docosahexaenoic acid in serum

phospholipids identifies individuals with preclinical mild cognitive

impairment/Alzheimer’s disease. Aging. 2017;9(3):964-985. doi:10.
18632/aging.101203

264. Luzzi S, Papiri G, Viticchi G, et al. Association between homocysteine

levels and cognitive profile in Alzheimer’s Disease. J Clin Neurosci.
2021;94:250-256. doi:10.1016/j.jocn.2021.09.033

265. Wang Q, Zhao J, Chang H, Liu X, Zhu R. Homocysteine and folic acid:

risk factors for Alzheimer’s disease-an updated meta-analysis. Front
Aging Neurosci. 2021;13:665114. doi:10.3389/fnagi.2021.665114

266. Zuin M, Cervellati C, Brombo G, Trentini A, Roncon L, Zuliani G.

Elevated blood homocysteine and risk of Alzheimer’s dementia: an

updated systematic review and meta-analysis based on prospective

studies. J Prev Alzheimers Dis. 2021;8(3):329-334. doi:10.14283/jpad.
2021.7

267. Kalra A, Teixeira AL, Diniz BS. Association of vitamin D levels

with incident all-cause dementia in longitudinal observational stud-

ies: a systematic review and meta-analysis. J Prev Alzheimers Dis.
2020;7(1):14-20. doi:10.14283/jpad.2019.44

268. Goodwill AM, Szoeke C. A systematic review and meta-analysis

of the effect of low vitamin D on cognition. J Am Geriatr Soc.
2017;65(10):2161-2168. doi:10.1111/jgs.15012

269. Ciavardelli D, Piras F, Consalvo A, et al. Medium-chain plasma

acylcarnitines, ketone levels, cognition, and gray matter

volumes in healthy elderly, mildly cognitively impaired, or

Alzheimer’s disease subjects. Neurobiol Aging. 2016;43:1-12.

doi:10.1016/j.neurobiolaging.2016.03.005

270. Castor KJ, Shenoi S, Edminster SP, et al. Urine dicarboxylic acids

change in pre-symptomatic Alzheimer’s disease and reflect

loss of energy capacity and hippocampal volume. PLoS One.
2020;15(4):e0231765. doi:10.1371/journal.pone.0231765. PubMed

PMID: 32298384; PubMed Central PMCID: PMCPMC7162508

analysis by our consultant (JMP) from Cipher Biostatistics & Report-

ing does not alter our adherence to PLOS ONE policies on sharing

data andmaterials.

271. DelParigiA,ChenK, SalbeAD, et al. Successful dieters have increased

neural activity in cortical areas involved in the control of behavior. Int
J Obes (Lond). 2007;31(3):440-448. doi:10.1038/sj.ijo.0803431

272. Kennedy DO, Haskell CF. Cerebral blood flow and behavioural

effects of caffeine in habitual and non-habitual consumers

of caffeine: a near infrared spectroscopy study. Biol Psychol.
2011;86(3):298-306. doi:10.1016/j.biopsycho.2010.12.010

273. Dodd FL, Kennedy DO, Riby LM, Haskell-Ramsay CF. A double-blind,

placebo-controlled study evaluating the effects of caffeine and L-

theanine both alone and in combination on cerebral blood flow,

cognition and mood. Psychopharmacology (Berl). 2015;232(14):2563-
2576. doi:10.1007/s00213-015-3895-0

274. Kennedy DO, Wightman EL, Reay JL, et al. Effects of resveratrol on

cerebral blood flow variables and cognitive performance in humans:

a double-blind, placebo-controlled, crossover investigation. Am J Clin
Nutr. 2010;91(6):1590-1597. doi:10.3945/ajcn.2009.28641

275. Wightman EL, Haskell CF, Forster JS, Veasey RC, Kennedy DO.

Epigallocatechin gallate, cerebral blood flow parameters, cogni-

tive performance and mood in healthy humans: a double-blind,

placebo-controlled, crossover investigation. Hum Psychopharmacol.
2012;27(2):177-186. doi:10.1002/hup.1263

276. WatanabeA,KatoN,KatoT. Effects of creatineonmental fatigue and

cerebral hemoglobin oxygenation.Neurosci Res. 2002;42(4):279-285.
doi:10.1016/s0168-0102(02)00007-x

277. Jackson PA, Reay JL, Scholey AB, Kennedy DO. DHA-rich oil mod-

ulates the cerebral haemodynamic response to cognitive tasks in

healthy young adults: a near IR spectroscopy pilot study. Br J Nutr.
2012;107(8):1093-1098. doi:10.1017/s0007114511004041

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.12845 by C

ochrane France, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3233/jad-2003-5406
https://doi.org/10.3233/jad-2012-111853
https://doi.org/10.3945/jn.109.113910
https://doi.org/10.1021/acs.molpharmaceut.5b00580
https://doi.org/10.1016/j.neuroscience.2014.02.042
https://doi.org/10.1371/journal.pone.0213389
https://doi.org/10.3233/jad-215536
https://doi.org/10.3233/jad-215536
https://doi.org/10.1016/j.jalz.2015.04.011
https://doi.org/10.1056/NEJM199704173361601
https://doi.org/10.1056/NEJM199704173361601
https://doi.org/10.1093/advances/nmz054
https://doi.org/10.1080/07315724.2007.10719583
https://doi.org/10.1002/ana.20854
https://doi.org/10.1212/WNL.0b013e3182436598
https://doi.org/10.1016/j.jalz.2017.01.025
https://doi.org/10.1016/j.trci.2019.11.004
https://doi.org/10.1212/wnl.0000000000000080
https://doi.org/10.1016/j.plefa.2017.06.006
https://doi.org/10.1016/j.plefa.2017.06.006
https://doi.org/10.18632/aging.101203
https://doi.org/10.18632/aging.101203
https://doi.org/10.1016/j.jocn.2021.09.033
https://doi.org/10.3389/fnagi.2021.665114
https://doi.org/10.14283/jpad.2021.7
https://doi.org/10.14283/jpad.2021.7
https://doi.org/10.14283/jpad.2019.44
https://doi.org/10.1111/jgs.15012
https://doi.org/10.1016/j.neurobiolaging.2016.03.005
https://doi.org/10.1371/journal.pone.0231765
https://doi.org/10.1038/sj.ijo.0803431
https://doi.org/10.1016/j.biopsycho.2010.12.010
https://doi.org/10.1007/s00213-015-3895-0
https://doi.org/10.3945/ajcn.2009.28641
https://doi.org/10.1002/hup.1263
https://doi.org/10.1016/s0168-0102(02)00007-x
https://doi.org/10.1017/s0007114511004041


26 YASSINE ET AL.

278. Cohen BM, Renshaw PF, Stoll AL, Wurtman RJ, Yurgelun-Todd

D, Babb SM. Decreased brain choline uptake in older adults. An

in vivo proton magnetic resonance spectroscopy study. JAMA.
1995;274(11):902-907

279. Silveri MM, Dikan J, Ross AJ, et al. Citicoline enhances frontal lobe

bioenergetics as measured by phosphorusmagnetic resonance spec-

troscopy. NMR Biomed. 2008;21(10):1066-1075. doi:10.1002/nbm.

1281

280. Brickman AM, Khan UA, Provenzano FA, et al. Enhancing den-

tate gyrus function with dietary flavanols improves cognition in

older adults. Nat Neurosci. 2014;17(12):1798-1803. doi:10.1038/nn.
3850

281. Gu Y, Vorburger RS, Gazes Y, et al. White matter integrity as a

mediator in the relationship between dietary nutrients and cognition

in the elderly. Ann Neurol. 2016;79(6):1014-1025. doi:10.1002/ana.
24674

282. Pelletier A, Barul C, Feart C, et al. Mediterranean diet and preserved

brain structural connectivity in older subjects. Alzheimers Dement.
2015;11(9):1023-1031. doi:10.1016/j.jalz.2015.06.1888

283. Zwilling CE, Talukdar T, Zamroziewicz MK, Barbey AK. Nutrient

biomarker patterns, cognitive function, and fMRI measures of net-

work efficiency in the aging brain. Neuroimage. 2019;188:239-251.
doi:10.1016/j.neuroimage.2018.12.007

284. Huhn S, Beyer F, Zhang R, et al. Effects of resveratrol on memory

performance, hippocampus connectivity and microstructure in older

adults - a randomized controlled trial. Neuroimage. 2018;174:177-
190. doi:10.1016/j.neuroimage.2018.03.023

285. Witte AV, Kerti L, Margulies DS, Flöel A. Effects of resvera-

trol on memory performance, hippocampal functional connectiv-

ity, and glucose metabolism in healthy older adults. J Neurosci.
2014;34(23):7862-7870. doi:10.1523/jneurosci.0385-14.2014

286. Meusel LC,AndersonND,ParrottMD, et al. Brain function is linked to

LDL cholesterol in older adults with cardiovascular risk. J Am Geriatr
Soc. 2017;65(2):e51-e5. doi:10.1111/jgs.14663

287. Petrie M, Rejeski WJ, Basu S, et al. Beet root juice: an ergogenic

aid for exercise and the aging brain. J Gerontol A Biol Sci Med Sci.
2017;72(9):1284-1289. doi:10.1093/gerona/glw219

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Yassine HN, SelfW, Kerman BE, et al.

Nutritional metabolism and cerebral bioenergetics in

Alzheimer’s disease and related dementias. Alzheimer’s Dement.

2022;1-26. https://doi.org/10.1002/alz.12845

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.12845 by C

ochrane France, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/nbm.1281
https://doi.org/10.1002/nbm.1281
https://doi.org/10.1038/nn.3850
https://doi.org/10.1038/nn.3850
https://doi.org/10.1002/ana.24674
https://doi.org/10.1002/ana.24674
https://doi.org/10.1016/j.jalz.2015.06.1888
https://doi.org/10.1016/j.neuroimage.2018.12.007
https://doi.org/10.1016/j.neuroimage.2018.03.023
https://doi.org/10.1523/jneurosci.0385-14.2014
https://doi.org/10.1111/jgs.14663
https://doi.org/10.1093/gerona/glw219
https://doi.org/10.1002/alz.12845

	Nutritional metabolism and cerebral bioenergetics in Alzheimer’s disease and related dementias
	1 | INTRODUCTION
	2 | NUTRITIONAL REGULATION OF BRAIN ENERGY METABOLISM IN AD PATHOGENESIS
	2.1 | Cell-specific bioenergetics
	2.1.1 | Neuron-astrocyte energy shuttles
	2.1.2 | Oligodendrocytes
	2.1.3 | Microglia
	2.1.4 | Endothelial cells
	2.1.5 | Epithelial cells
	2.1.6 | Pericytes

	2.2 | Cerebral bioenergetics supply and dysfunction in AD
	2.2.1 | Dysregulated glucose metabolism
	2.2.2 | Impaired mitochondrial FAO
	2.2.3 | Oxidative damage
	2.2.4 | Cell-specific bioenergetic failure in AD
	2.2.5 | Blood-brain barrier dysfunction, nutrient transport, and maintenance in the CNS

	2.3 | APOE4 and cerebral bioenergetics
	2.4 | Gut microbiome dysbiosis and cerebral bioenergetics

	3 | EVIDENCE FOR TARGETING CEREBRAL BIOENERGETICS DEFICITS IN AD WITH NUTRITION
	3.1 | Single or few nutrient trials
	3.1.1 | B1 vitamins
	3.1.2 | Vitamin B12, vitamin B6, and folate
	3.1.3 | PUFAs
	3.1.4 | Ketones

	3.2 | Diet patterns and whole diet interventions
	3.3 | Emerging targets for cerebral bioenergetic restoration
	3.3.1 | Acetyl-L-carnitine
	3.3.2 | Nicotinamide adenine dinucleotide (NAD+) precursors
	3.3.3 | Microbial metabolites and probiotics
	3.3.4 | Mitochondrial complex IV


	4 | FUTURE DIRECTIONS TO GUIDE NUTRITION INTERVENTIONS TARGETING CEREBRAL BIOENERGETICS
	4.1 | Preclinical studies of chronic inflammation and cerebral bioenergetics
	4.2 | Epigenetic and translational network malfunctions
	4.3 | Biomarkers
	4.3.1 | Blood, urinary, and CSF based biomarkers
	4.3.2 | Neuroimaging biomarkers

	4.4 | Microbiota sampling in human studies

	5 | CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	REFERENCES
	SUPPORTING INFORMATION


