227 research outputs found
Est-il possible d'optimiser le traitement médicamenteux des patients âgés ?
Contexte: La polymédication, définie ici comme la prescription simultanée de M 4 médicaments, est fréquente chez les personnes de M 65 ans. Celle-ci peut s'accompagner d'une mauvaise adhérence aux traitements et provoquer des effets indésirables. Cette revue systématique a évalué l'efficacité des interventions visant à améliorer l'adéquation de la polymédication chez la
personne âgée (M 65 ans) présentant deux maladies chroniques ou plus
Ceftriaxone acts synergistically with levofloxacin in experimental meningitis and reduces levofloxacin-induced resistance in penicillin-resistant pneumococci
Ceftriaxone acted synergistically with levofloxacin in time-killing assays in vitro over 8 h against two penicillin-resistant pneumococcal strains (WB4 and KR4; MIC of penicillin: 4 mg/L). Synergy was confirmed with the chequerboard method, showing FIC indices of 0.25. In the experimental rabbit meningitis model, ceftriaxone (1× 125 mg/kg) was slightly less bactericidal (-0.30 Δlog10 cfu/mL.h) compared with levofloxacin (-0.45 Δlog10 cfu/mL.h) against the penicillin-resistant strain WB4. The combination therapy (levofloxacin and ceftriaxone) was significantly superior (-0.64 Δlog10 cfu/mL.h) to either monotherapy. In cycling experiments in vitro, the addition of ceftriaxone at a sub-MIC concentration (1/16 MIC) reduced levofloxacin-induced resistance in the two strains KR4 and WB4. After 12 cycles with levofloxacin monotherapy, the MIC increased 64-fold in both strains versus a 16-fold increase with the combination (levofloxacin + ceftriaxone 1/16 MIC). In both strains, levofloxacin-induced resistance was confirmed by mutations detected in the genes parC and gyrA, encoding for subunits of topoisomerase IV and gyrase, respectively. The addition of ceftriaxone suppressed mutations in parC but led to a new mutation in parE in both strain
Meropenem Prevents Levofloxacin-Induced Resistance in Penicillin-Resistant Pneumococci and Acts Synergistically with Levofloxacin in Experimental Meningitis
The aim of the present study was to investigate the potential synergy between meropenem and levofloxacin in vitro and in experimental meningitis and to determine the effect of meropenem on levofloxacin-induced resistance in vitro. Meropenem increased the efficacy of levofloxacin against the penicillin-resistant pneumococcal strain KR4 in time-killing assays in vitro and acted synergistically against a second penicillin-resistant strain WB4. In the checkerboard, only an additive effect (FIC indices: 1.0) was observed for both strains. In cycling experiments in vitro, levofloxacin alone led to a 64-fold increase in the MIC for both strains after 12 cycles. Addition of meropenem in sub-MIC concentrations (0.25×MIC) completely inhibited the selection of levofloxacin-resistant mutants in WB4 after 12 cycles. In KR4, the addition of meropenem led to just a twofold increase in the MIC for levofloxacin after 12 cycles. Mutations detected in the genes encoding for topoisomerase IV (parC) and gyrase (gyrA) confirmed the levofloxacin-induced resistance in both strains. Addition of meropenem was able to completely suppress levofloxacin-induced mutations in WB4 and led to only one mutation in parE in KR4. In experimental meningitis, meropenem, given in two doses (2×125mg/kg), produced a good bactericidal activity (−0.45 Δlog10 cfu/ml·h) comparable to one dose (1×10mg/kg) of levofloxacin (−0.44 Δlog10 cfu/ml·h) against the penicillin-resistant strain WB4. Meropenem combined with levofloxacin acted synergistically (−0.93 Δlog10 cfu/ml·h), sterilizing the CSF of all rabbit
Protective Efficacy of Individual CD8+ T Cell Specificities in Chronic Viral Infection.
Specific CD8(+) T cells (CTLs) play an important role in resolving protracted infection with hepatitis B and C virus in humans and lymphocytic choriomeningitis virus (LCMV) in mice. The contribution of individual CTL specificities to chronic virus control, as well as epitope-specific patterns in timing and persistence of antiviral selection pressure, remain, however, incompletely defined. To monitor and characterize the antiviral efficacy of individual CTL specificities throughout the course of chronic infection, we coinoculated mice with a mixture of wild-type LCMV and genetically engineered CTL epitope-deficient mutant virus. A quantitative longitudinal assessment of viral competition revealed that mice continuously exerted CTL selection pressure on the persisting virus population. The timing of selection pressure characterized individual epitope specificities, and its magnitude varied considerably between individual mice. This longitudinal assessment of "antiviral efficacy" provides a novel parameter to characterize CTL responses in chronic viral infection. It demonstrates remarkable perseverance of all antiviral CTL specificities studied, thus raising hope for therapeutic vaccination in the treatment of persistent viral diseases
STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.
Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma
Replicating viral vector platform exploits alarmin signals for potent CD8<sup>+</sup> T cell-mediated tumour immunotherapy.
Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTL <sup>eff</sup> ) responses. Conversely, the induction of protective tumour-specific CTL <sup>eff</sup> and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTL <sup>eff</sup> responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTL <sup>eff</sup> influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy
A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells
The most effective strategy for protection against intracellular infections such as Leishmania is
vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live
vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for longterm protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very
efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to
efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal ntigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine
P19-37. Replication-defective lymphocytic choriomeningitis virus vectors boost cellular and humoral immunity after DNA or adenovirus vector priming
Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses
available in PMC 2011 September 1Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.Ragon Institute of MGH, MIT and HarvardBill & Melinda Gates FoundationUnited States. Dept. of Defense (contract W911NF-07-D-0004)National Institutes of Health (U.S.) (P41RR002250)National Institutes of Health (U.S.) (RC2GM092599
Fingolimod and tumor-infiltrating lymphocytes in checkpoint-inhibitor treated cancer patients.
Immune checkpoint inhibitors (ICIs) are emerging as the new standard of care for treating various metastatic cancers. It is known that effective anti-tumor immune responses are associated with a stronger presence of tumor-infiltrating lymphocytes (TILs) in solid tumor tissue. Cancer patients with relapsing-remitting multiple sclerosis (RRMS) are often under continuous treatment with fingolimod, an immune-modulating drug that inhibits lymphocyte egress from secondary lymphatic organs. Little is known about the effect of fingolimod on ICI cancer therapy, as fingolimod may limit the number of TILs. Here we present three patients with RRMS, who developed various cancers during fingolimod treatment. Histology of all tumors consistently showed low numbers of TILs. A second biopsy taken from one of the tumors, a melanoma, revealed a significant increase of TILs after stopping fingolimod and starting pembrolizumab, indicating a surge in the number and re-invigoration of T cells. Our study suggests that fingolimod limits the number of TILs in solid tumors and may, thus, inhibit anti-cancer immune responses
- …
