1,300 research outputs found

    Scalable Atomistic Simulations of Quantum Electron Transport using Empirical Pseudopotentials

    Full text link
    The simulation of charge transport in ultra-scaled electronic devices requires the knowledge of the atomic configuration and the associated potential. Such "atomistic" device simulation is most commonly handled using a tight-binding approach based on a basis-set of localized orbitals. Here, in contrast to this widely used tight-binding approach, we formulate the problem using a highly accurate plane-wave representation of the atomic (pseudo)-potentials. We develop a new approach that separately deals with the intrinsic Hamiltonian, containing the potential due to the atomic configuration, and the extrinsic Hamiltonian, related to the external potential. We realize efficient performance by implementing a finite-element like partition-of-unity approach combining linear shape functions with Bloch-wave enhancement functions. We match the performance of previous tight-binding approaches, while retaining the benefits of a plane wave based model. We present the details of our model and its implementation in a full-fledged self-consistent ballistic quantum transport solver. We demonstrate our implementation by simulating the electronic transport and device characteristics of a graphene nanoribbon transistor containing more than 2000 atoms. We analyze the accuracy, numerical efficiency and scalability of our approach. We are able to speed up calculations by a factor of 100 compared to previous methods based on plane waves and envelope functions. Furthermore, our reduced basis-set results in a significant reduction of the required memory budget, which enables devices with thousands of atoms to be simulated on a personal computer

    Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields : a rigorous approach

    Full text link
    A general framework to calculate the Zener current in an indirect semiconductor with an externally applied potential is provided. Assuming a parabolic valence and conduction band dispersion, the semiconductor is in equilibrium in the presence of the external field as long as the electronphonon interaction is absent. The linear response to the electron-phonon interaction results in a non-equilibrium system. The Zener tunneling current is calculated from the number of electrons making the transition from valence to conduction band per unit time. A convenient expression based on the single particle spectral functions is provided, enabling the numerical calculation of the Zener current under any three-dimensional potential profile. For a one dimensional potential profile an analytical expression is obtained for the current in a bulk semiconductor, a semiconductor under uniform field and a semiconductor under a non-uniform field using the WKB (Wentzel-Kramers-Brillouin) approximation. The obtained results agree with the Kane result in the low field limit. A numerical example for abrupt p - n diodes with different doping concentrations is given, from which it can be seen that the uniform field model is a better approximation than the WKB model but a direct numerical treatment is required for low bias conditions.Comment: 29 pages, 7 figure

    Phage Lytic Enzyme Cpl-1 for Antibacterial Therapy in Experimental Pneumococcal Meningitis

    Get PDF
    Treatment of bacterial meningitis caused by Streptococcus pneumoniae is increasingly difficult, because of emerging resistance to antibiotics. Recombinant Cpl-1, a phage lysin specific for S. pneumoniae, was evaluated for antimicrobial therapy in experimental pneumococcal meningitis using infant Wistar rats. A single intracisternal injection (20 mg/kg) of Cpl-1 resulted in a rapid (within 30 min) decrease in pneumococci in cerebrospinal fluid (CSF) by 3 orders of magnitude lasting for 2 h. Intraperitoneal administration of Cpl-1 (200 mg/kg) led to an antibacterial effect in CSF of 2 orders of magnitude for 3 h. Cpl-1 may hold promise as an alternative treatment option in pneumococcal meningiti

    The graceful exit from the anomaly-induced inflation: Supersymmetry as a key

    Get PDF
    The stable version of the anomaly-induced inflation does not need a fine tuning and leads to sufficient expansion of the Universe. The non-stable version (Starobinsky model) provides the graceful exit to the FRW phase. We indicate the possibility of the inflation which is stable at the beginning and unstable at the end. The effect is due to the soft supersymmetry breaking and the decoupling of the massive sparticles at low energy.Comment: 10 pages, 2 figures using axodraw. Modified version. Discussion concerning the gravitational scale modified, the effect of massive particles in the last stage of inflation taken into accoun

    Relation Between Einstein And Quantum Field Equations

    Full text link
    We show that there exists a choice of scalar field modes, such that the evolution of the quantum field in the zero-mass and large-mass limits is consistent with the Einstein equations for the background geometry. This choice of modes is also consistent with zero production of these particles and thus corresponds to a preferred vacuum state preserved by the evolution. In the zero-mass limit, we find that the quantum field equation implies the Einstein equation for the scale factor of a radiation-dominated universe; in the large-mass case, it implies the corresponding Einstein equation for a matter-dominated universe. Conversely, if the classical radiation-dominated or matter-dominated Einstein equations hold, there is no production of scalar particles in the zero and large mass limits, respectively. The suppression of particle production in the large mass limit is over and above the expected suppression at large mass. Our results hold for a certain class of conformally ultrastatic background geometries and therefore generalize previous results by one of us for spatially flat Robertson-Walker background geometries. In these geometries, we find that the temporal part of the graviton equations reduces to the temporal equation for a massless minimally coupled scalar field, and therefore the results for massless particle production hold also for gravitons. Within the class of modes we study, we also find that the requirement of zero production of massless scalar particles is not consistent with a non-zero cosmological constant. Possible implications are discussed.Comment: Latex, 24 pages. Minor changes in text from original versio

    Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness

    Full text link
    We investigate the diffusive electron-transport properties of charge-doped graphene ribbons and nanoribbons with imperfect edges. We consider different regimes of edge scattering, ranging from wide graphene ribbons with (partially) diffusive edge scattering to ribbons with large width variations and nanoribbons with atomistic edge roughness. For the latter, we introduce an approach based on pseudopotentials, allowing for an atomistic treatment of the band structure and the scattering potential, on the self-consistent solution of the Boltzmann transport equation within the relaxation-time approximation and taking into account the edge-roughness properties and statistics. The resulting resistivity depends strongly on the ribbon orientation, with zigzag (armchair) ribbons showing the smallest (largest) resistivity and intermediate ribbon orientations exhibiting intermediate resistivity values. The results also show clear resistivity peaks, corresponding to peaks in the density of states due to the confinement-induced subband quantization, except for armchair-edge ribbons that show a very strong width dependence because of their claromatic behavior. Furthermore, we identify a strong interplay between the relative position of the two valleys of graphene along the transport direction, the correlation profile of the atomistic edge roughness, and the chiral valley modes, leading to a peculiar strongly suppressed resistivity regime, most pronounced for the zigzag orientation.Comment: 13 pages, 7 figure

    An Overview of the Anomaly-Induced Inflation

    Full text link
    The anomaly-induced inflation (modified Starobinsky model) is based on the application of the effective quantum field theory approach to the Early Universe. We present a brief general review of this model with a special attention to the existing difficulties and unsolved problems.Comment: Talk presented at IRGA2003 (Renormalization Group and Anomalies in Gravitation and Cosmology, Ouro Preto, Brazil, 16-23 March, 2003

    Anomaly-Induced Effective Action and Inflation

    Get PDF
    In the early Universe matter can be described as a conformal invariant ultra-relativistic perfect fluid, which does not contribute, on classical level, to the evolution of the isotropic and homogeneous metric. If we suppose that there is some desert in the particle spectrum just below the Planck mass, then the effect of conformal trace anomaly is dominating at the corresponding energies. With some additional constraints on the particle content of the underlying gauge model (which favor extended or supersymmetric versions of the Standard Model rather than the minimal one), one arrives at the stable inflation. We review the model and report about the calculation of the gravitational waves on the background of the anomaly-induced inflation. The result for the perturbation spectrum is close to the one for the conventional inflaton model, and is in agreement with the existing Cobe data (see also [hep-th/0009197]).Comment: 4 pages, LaTeX. Contribution to the Proceedings of the EuroConference on Frontiers in Particle Astrophysics and Cosmology, 30 September - 5 October 2000. San Feliu, Spai

    Complete phenomenological gravitational waveforms from spinning coalescing binaries

    Full text link
    The quest for gravitational waves from coalescing binaries is customarily performed by the LIGO-Virgo collaboration via matched filtering, which requires a detailed knowledge of the signal. Complete analytical coalescence waveforms are currently available only for the non-precessing binary systems. In this paper we introduce complete phenomenological waveforms for the dominant quadrupolar mode of generically spinning systems. These waveforms are constructed by bridging the gap between the analytically known inspiral phase, described by spin Taylor (T4) approximants in the restricted waveform approximation, and the ring-down phase through a phenomenological intermediate phase, calibrated by comparison with specific, numerically generated waveforms, describing equal mass systems with dimension-less spin magnitudes equal to 0.6. The overlap integral between numerical and phenomenological waveforms ranges between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v

    Spin diffusion/transport in nn-type GaAs quantum wells

    Full text link
    The spin diffusion/transport in nn-type (001) GaAs quantum well at high temperatures (120\ge120 K) is studied by setting up and numerically solving the kinetic spin Bloch equations together with the Poisson equation self-consistently. All the scattering, especially the electron-electron Coulomb scattering, is explicitly included and solved in the theory. This enables us to study the system far away from the equilibrium, such as the hot-electron effect induced by the external electric field parallel to the quantum well. We find that the spin polarization/coherence oscillates along the transport direction even when there is no external magnetic field. We show that when the scattering is strong enough, electron spins with different momentums oscillate in the same phase which leads to equal transversal spin injection length and ensemble transversal injection length. It is also shown that the intrinsic scattering is already strong enough for such a phenomena. The oscillation period is almost independent on the external electric field which is in agreement with the latest experiment in bulk system at very low temperature [Europhys. Lett. {\bf 75}, 597 (2006)]. The spin relaxation/dephasing along the diffusion/transport can be well understood by the inhomogeneous broadening, which is caused by the momentum-dependent diffusion and the spin-orbit coupling, and the scattering. The scattering, temperature, quantum well width and external magnetic/electric field dependence of the spin diffusion is studied in detail.Comment: 12 pages, 6 figures, to be published in J Appl. Phy
    corecore