35,400 research outputs found
On the zero set of G-equivariant maps
Let be a finite group acting on vector spaces and and consider a
smooth -equivariant mapping . This paper addresses the question of
the zero set near a zero of with isotropy subgroup . It is known
from results of Bierstone and Field on -transversality theory that the zero
set in a neighborhood of is a stratified set. The purpose of this paper is
to partially determine the structure of the stratified set near using only
information from the representations and . We define an index
for isotropy subgroups of which is the difference of
the dimension of the fixed point subspace of in and . Our main
result states that if contains a subspace -isomorphic to , then for
every maximal isotropy subgroup satisfying , the zero
set of near contains a smooth manifold of zeros with isotropy subgroup
of dimension . We also present a systematic method to study
the zero sets for group representations and which do not satisfy the
conditions of our main theorem. The paper contains many examples and raises
several questions concerning the computation of zero sets of equivariant maps.
These results have application to the bifurcation theory of -reversible
equivariant vector fields
The nature of turbulence in OMC1 at the star forming scale: observations and simulations
Aim: To study turbulence in the Orion Molecular Cloud (OMC1) by comparing
observed and simulated characteristics of the gas motions.
Method: Using a dataset of vibrationally excited H2 emission in OMC1
containing radial velocity and brightness which covers scales from 70AU to
30000AU, we present the transversal structure functions and the scaling of the
structure functions with their order. These are compared with the predictions
of two-dimensional projections of simulations of supersonic hydrodynamic
turbulence.
Results: The structure functions of OMC1 are not well represented by power
laws, but show clear deviations below 2000AU. However, using the technique of
extended self-similarity, power laws are recovered at scales down to 160AU. The
scaling of the higher order structure functions with order deviates from the
standard scaling for supersonic turbulence. This is explained as a selection
effect of preferentially observing the shocked part of the gas and the scaling
can be reproduced using line-of-sight integrated velocity data from subsets of
supersonic turbulence simulations. These subsets select regions of strong flow
convergence and high density associated with shock structure. Deviations of the
structure functions in OMC1 from power laws cannot however be reproduced in
simulations and remains an outstanding issue.Comment: 12 pages, 8 figures, accepted A&A. Revised in response to referee.
For higher resolution, see http://www.astro.phys.au.dk/~maikeng/sim_paper
The automated multi-stage substructuring system for NASTRAN
The substructuring capability developed for eventual installation in Level 16 is now operational in a test version of NASTRAN. Its features are summarized. These include the user-oriented, Case Control type control language, the automated multi-stage matrix processing, the independent direct access data storage facilities, and the static and normal modes solution capabilities. A complete problem analysis sequence is presented with card-by-card description of the user input
Decoherence - Fluctuation Relation and Measurement Noise
We discuss fluctuations in the measurement process and how these fluctuations
are related to the dissipational parameter characterising quantum damping or
decoherence. On the example of the measuring current of the variable-barrier or
QPC problem we show there is an extra noise or fluctuation connected with the
possible different outcomes of a measurement. This noise has an enhanced short
time component which could be interpreted as due to ``telegraph noise'' or
``wavefunction collapses''. Furthermore the parameter giving the the strength
of this noise is related to the parameter giving the rate of damping or
decoherence.Comment: 6 pages, no figures, for Okun Festschrift, Physics Report
A Toy Model of Flying Snake's Glide
We have developed a toy model of flying snake's glide [J.J. Socha, Nature
vol. 418 (2002) 603.] by modifying a model for a falling paper. We have found
that asymmetric oscillation is a key about why snake can glide. Further
investigation for snake's glide will provide us details about how it can glide
without a wing.Comment: 6 pages, to be submitted to J. Phys. Soc. Jpn. Revised Version
submitted to the abov
Derivation of the Lorentz Force Law, the Magnetic Field Concept and the Faraday-Lenz Law using an Invariant Formulation of the Lorentz Transformation
It is demonstrated how the right hand sides of the Lorentz Transformation
equations may be written, in a Lorentz invariant manner, as 4--vector scalar
products. This implies the existence of invariant length intervals analogous to
invariant proper time intervals. This formalism, making essential use of the
4-vector electromagnetic potential concept, provides a short derivation of the
Lorentz force law of classical electrodynamics, the conventional definition of
the magnetic field, in terms of spatial derivatives of the 4--vector potential
and the Faraday-Lenz Law. An important distinction between the physical
meanings of the space-time and energy-momentum 4--vectors is pointed out.Comment: 15 pages, no tables 1 figure. Revised and extended version of
physics/0307133 Some typos removed and minor text improvements in this
versio
Interaction of a Modulated Electron Beam with a Plasma
The results of a theoretical and experimental investigation of the high-frequency interaction of an electron beam with a plasma are reported. An electron beam, modulated at a microwave frequency, passes through a uniform region of a mercury arc discharge after which it is demodulated. Exponentially growing wave amplification along the electron beam was experimentally observed for the first time at a microwave frequency equal to the plasma frequency. Approximate theories of the effects of 1) plasma-electron collision frequencies, 2) plasma-electron thermal velocities and 3) finite beam diameter, are given. In a second experiment the interaction between a modulated electron beam and a slow electrostatic wave on a plasma column has been studied. A strong interaction occurs when the velocity of the electron beam is approximately equal to the velocity of the wave and the interaction is essentially the same as that which occurs in traveling-wave amplifiers, except that here the plasma colum replaces the usual helical slow-wave circuit. The theory predicting rates of growth is presented and compared with the experimental results
Cracks Cleave Crystals
The problem of finding what direction cracks should move is not completely
solved. A commonly accepted way to predict crack directions is by computing the
density of elastic potential energy stored well away from the crack tip, and
finding a direction of crack motion to maximize the consumption of this energy.
I provide here a specific case where this rule fails. The example is of a crack
in a crystal. It fractures along a crystal plane, rather than in the direction
normally predicted to release the most energy. Thus, a correct equation of
motion for brittle cracks must take into account both energy flows that are
described in conventional continuum theories and details of the environment
near the tip that are not.Comment: 6 page
- …
