128 research outputs found

    ALMA RESOLVES THE MOLECULAR GAS ON A YOUNG LOW-METALLICITY STARBURST GALAXY AT z= 1.7

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array observations of CO lines and dust continuum emission on the source RCSGA 032727-132609, a young z=1.7 low-metallicity starburst galaxy. The CO(3-2), CO(6-5) lines and continuum at rest-frame 450 m are detected with high significance and show a resolved structure in the image plane. We used the corresponding lensing model to obtain a source plane reconstruction of the detected emission. The intrinsic properties of RCSGA 032727-132609 show an enhanced star-formation activity compared to local spiral galaxies with similar molecular gas densities, supporting the starburst phase scenario

    Strong Clustering of Lyman Break Galaxies around Luminous Quasars at z~4

    Get PDF
    In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z~4 QSO fields with VLT/FORS exploiting a novel set of narrow band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of Delta_z~0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z>~4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z~4, on scales of 0.1<~R<~9 Mpc/h (comoving). Assuming a power law form for the cross-correlation function xi=(r/r0_QG)^gamma, we measure r0_QG=8.83^{+1.39}_{-1.51} Mpc/h for a fixed slope of gamma=2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a linear bias model. We also measure a strong auto-correlation of LBGs in our QSO fields finding r0_GG=21.59^{+1.72}_{-1.69} Mpc/h for a fixed slope of gamma=1.5, which is ~4 times larger than the LBG auto-correlation length in random fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive (M_halo>10^12 M_sun) dark matter halos at z~4.Comment: 25 pages, 22 figures, submitted to the Ap

    Clustering of Lyman-alpha Emitters Around Quasars at z∼4z\sim4

    Full text link
    The strong observed clustering of z>3.5z>3.5 quasars indicates they are hosted by massive (Mhalo≳1012 h−1 M⊙M_{\rm{halo}}\gtrsim10^{12}\,h^{-1}\,\rm{M_{\odot}}) dark matter halos. Assuming quasars and galaxies trace the same large-scale structures, this should also manifest as strong clustering of galaxies around quasars. Previous work on high-redshift quasar environments, mostly focused at z>5z>5, have failed to find convincing evidence for these overdensities. Here we conduct a survey for Lyman alpha emitters (LAEs) in the environs of 17 quasars at z∼4z\sim4 probing scales of R≲7 h−1 MpcR\lesssim7\,h^{-1}\,{\rm{Mpc}}. We measure an average LAE overdensity around quasars of 1.4 for our full sample, which we quantify by fitting the quasar-LAE cross-correlation function. We find consistency with a power-law shape with correlation length of r0QG=2.78−1.05+1.16 h−1 cMpcr^{QG}_{0}=2.78^{+1.16}_{-1.05}\,h^{-1}\,{\rm{cMpc}} for a fixed slope of γ=1.8\gamma=1.8. We also measure the LAE auto-correlation length and find r0GG=9.12−1.31+1.32 h−1r^{GG}_{0}=9.12^{+1.32}_{-1.31}\,h^{-1}\,cMpc (γ=1.8\gamma=1.8), which is 3.33.3 times higher than the value measured in blank fields. Taken together our results clearly indicate that LAEs are significantly clustered around z∼4z\sim4 quasars. We compare the observed clustering with the expectation from a deterministic bias model, whereby LAEs and quasars probe the same underlying dark matter overdensities, and find that our measurements fall short of the predicted overdensities by a factor of 2.1. We discuss possible explanations for this discrepancy including large-scale quenching or the presence of excess dust in galaxies near quasars. Finally, the large cosmic variance from field-to-field observed in our sample (10/17 fields are actually underdense) cautions one from over-interpreting studies of z∼6z\sim6 quasar environments based on a single or handful of quasar fields.Comment: 19 pages, 12 figures, submitted to the Ap

    Evolution of Cluster Ellipticals at 0.2 < z < 1.2 from Hubble Space Telescope Imaging

    Get PDF
    Two-dimensional surface photometry derived from Hubble Space Telescope imaging is presented for a sample of 225 early-type galaxies (assumed to be cluster members) in the fields of 9 clusters at redshifts 0.17<z<1.210.17 < z < 1.21. The 94 luminous ellipticals (MAB(B)<−20M_{AB}(B)<-20; selected by morphology alone with no reference to color) form tight sequences in the size-luminosity plane. The position of these sequences shifts, on average, with redshift so that an object of a given size at z=0.55 is brighter by ΔM(B)=−0.57±0.13\Delta M(B)=-0.57 \pm 0.13 mag than its counterpart (measured with the same techniques) in nearby clusters. At z=0.9 the shift is ΔM(B)=−0.96±0.22\Delta M(B)=-0.96 \pm 0.22 mag. If the relation between size and luminosity is universal so that the local cluster galaxies represent the evolutionary endpoints of those at high redshift, and if the size-luminosity relation is not modified by dynamical processes then this population of galaxies has undergone significant luminosity evolution since z=1 consistent with expectations based on models of passively evolving, old stellar populations.Comment: 7 pages, 3 figures, and 1 Tabl

    Discovery of a New Quadruple Lens HST 1411+5211

    Get PDF
    Gravitational lensing is an important tool for probing the mass distribution of galaxies. In this letter we report the discovery of a new quadruple lens HST 1411+5211 found in archived WFPC2 images of the galaxy cluster CL140933+5226. If the galaxy is a cluster member then its redshift is z=0.46z=0.46. The images of the source appear unresolved in the WFC implying that the source is a quasar. We have modeled the lens as both a single galaxy and a galaxy plus a cluster. The latter model yields excellent fits to the image positions along with reasonable parameters for the galaxy and cluster making HST 1411+5211 a likely gravitational lens. Determination of the source redshift and confirmation of the lens redshift would allow us to put strong constraints on the mass distribution of the lensing galaxy.Comment: 11 pages including 1 postscript figure, aastex. Accepted to the ApJL. Also available from: http://www.astro.lsa.umich.edu:80/users/philf/www/papers/list.htm

    RCS043938-2904.9: A New Rich Cluster of Galaxies at z=0.951

    Full text link
    We present deep I, J_s, K_s imaging and optical spectroscopy of the newly discovered Red-Sequence Cluster Survey cluster RCS043938-2904.9. This cluster, drawn from an extensive preliminary list, was selected for detailed study on the basis of its apparent optical richness. Spectroscopy of 11 members places the cluster at z=0.951 +- 0.006, and confirms the photometric redshift estimate from the (R-z) color-magnitude diagram. Analysis of the infrared imaging data demonstrates that the cluster is extremely rich, with excess counts in the Ks-band exceeding the expected background counts by 9 sigma. The properties of the galaxies in RCS043938-2904.9 are consistent with those seen in other clusters at similar redshifts. Specifically, the red-sequence color, slope and scatter, and the size-magnitude relation of these galaxies are all consistent with that seen in the few other high redshift clusters known, and indeed are consistent with appropriately evolved properties of local cluster galaxies. The apparent consistency of these systems implies that the rich, high-redshift RCS clusters are directly comparable to the few other systems known at z ~ 1, most of which have been selected on the basis of X-ray emission.Comment: 12 pages, 1 color figure. Accepted for publication on The ApJ Letter
    • …
    corecore