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Abstract

In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of
the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z∼ 4 are the most
strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large
overdensities of galaxies, implying a strong QSO–galaxy cross-correlation function. We observed six z∼ 4 QSO
fields with VLT/FORS, exploiting a novel set of narrow-band filters custom designed to select Lyman Break
Galaxies (LBGs) in a thin redshift slice ofD ~z 0.3, mitigating the projection effects that have limited the sensitivity
of previous searches for galaxies around z 4 QSOs. We find that LBGs are strongly clustered around QSOs,
and present the first measurement of the QSO–LBG cross-correlation function at z∼ 4, on scales of

  -R h0.1 9 Mpc1 (comoving). Assuming a power-law form for the cross-correlation function x = g( )r r0
QG ,

we measure = -
+ -r h8.83 Mpc0

QG
1.51
1.39 1 for a fixed slope of g = 2.0. This result is in agreement with the expected

cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a
deterministic bias model. We also measure a strong auto-correlation of LBGs in our QSO fields, finding

= -
+ -r h21.59 Mpc0

GG
1.69
1.72 1 for a fixed slope of g = 1.5, which is ∼4 times larger than the LBG auto-correlation

length in blank fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively
support a picture where luminous QSOs inhabit exceptionally massive ( > M M10halo

12 ) dark matter halos at z∼ 4.
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1. Introduction

Our understanding of structure formation suggests that small
inhomogeneities in the density field shortly after the big bang
grew over cosmic time via gravitational instability (e.g.,
Dodelson 2003; Padmanabhan 2006; Schneider 2015) into
massive dark matter halos at z=0. As clusters of galaxies are
the most massive, gravitationally bound structures in the
universe, we expect them to form from the highest-density
peaks at early times. This make them ideal laboratories for
studying the formation and evolution of cosmic structure.

Because of the small areas of sky surveyed at high redshift,
and the low comoving number density ∼10−7 Mpc−3 of local
clusters (Gioia et al. 2001; Vikhlinin et al. 2009), the
evolutionary link between these low-redshift clusters and
high-redshift galaxies has been challenging to make. The
progenitors of clusters are extremely difficult to identify when
the density contrast between the forming cluster and its
surroundings is small (for a review see Overzier 2016). Efforts
have been made to search for these so-called proto-clusters in
large galaxy surveys with subsequent spectroscopic follow-up,
successfully detecting some structures (e.g., Steidel et al. 2000,
2005; Ouchi et al. 2005; Capak et al. 2011; Wang et al. 2016).
However, given the small volume of such high-redshift

surveys, a commonly adopted approach is to search for
proto-clusters around known high-redshift massive galaxies.
One very fruitful technique to find high-redshift proto-

clusters has been to use the presence of an active supermassive
black hole (BH) as a signpost for a massive galaxy and hence
massive dark matter halo in the distant universe (e.g.,
Kashikawa et al. 2007; Venemans et al. 2007; Overzier
et al. 2008; Morselli et al. 2014). This technique is motivated
by several considerations. First, the masses of supermassive
BHs (MBH) are known to tightly correlate with the bulge mass
of their host galaxy (Magorrian et al. 1998; Ferrarese &
Merritt 2000; Gebhardt et al. 2000), and possibly with the
masses of their host dark halos (Mhalo) (Ferrarese 2002, but see
Kormendy & Bender 2011). Intriguingly, the most luminous
quasars (QSOs) at >z 3 have ~ ´ –M M1 6 10BH

9 (Shen
et al. 2011), comparable to the most massive known local BHs.
If the present-day -M MBH halo relation holds at early times,
such BHs should reside in exceptionally massive halos.
Second, some studies have suggested that the nuclear activity
in active galactic nuclei (AGNs) is triggered by processes
related to the environment where they reside. For example,
galaxy mergers could trigger the AGN activity (Bahcall et al.
1997; Wyithe & Loeb 2002; Hennawi et al. 2015), and galaxy
mergers occur preferentially in dense environments (Lacey &
Cole 1993). This would imply that the existence of an AGN
requires a dense environment around it. Finally, another line of
evidence that QSOs trace the rarest environments at high
redshift arises from their extremely strong clustering. Indeed,
Shen et al. (2007) determined that QSOs at >z 3.5 have a
comoving auto-correlation length of = -r h24.3 Mpc0

1 (for a
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fixed correlation function slope of g = 2.0), making them the
most strongly clustered population in the universe, and
demanding that they reside in the most massive

> M M10halo
12 dark matter halos at this epoch. This high

clustering also implies a small scattering in the –L MQSO halo
relation (White et al. 2008) and then, for the case of luminous,
high-redshift QSOs, their host halo masses are well con-
strained. Additionally, the Shen et al. (2007) correlation
function agrees with that required to explain the abundance
of binary QSOs at >z 3.5 (Hennawi et al. 2010; Shen et al.
2010), indicating that overdense structures around QSOs
extend down to scales as small as -h100 kpc1 . Since in
hierarchical clustering models, QSOs and galaxies trace the
same underlying dark matter density distribution, the generic
prediction is that galaxies should be very strongly clustered
around QSOs at z 3.5. Observationally this should be
reflected as a strong QSO–galaxy cross-correlation function.

The QSO–galaxy cross-correlation function has been
measured at <z 4 in the past. At z 1 it is found to be
in good agreement with the auto-correlation of galaxies
and QSOs, and it has been shown to be weakly dependent
on the QSO luminosity, and redshift (e.g., Coil et al. 2007;
Padmanabhan et al. 2009; Shen et al. 2013). Adelberger &
Steidel (2005) measured the AGN–galaxy cross-correlation
function at higher redshifts (  z2 3), finding a cross-
correlation length of ~ -r h5 Mpc0

1 for a slope of g = 1.6,
which is similar to the auto-correlation of Lyman Break
Galaxies (LBGs) at z∼ 3 (Adelberger et al. 2003). They also
claim an independence of the cross-correlation length with the
AGN luminosity, implying that both faint and bright AGNs
should be found in halos with similar masses. The highest-
redshift measurement of QSO environments is the work of
Trainor & Steidel (2012), who quantified the clustering of
LBGs around 15 hyper-luminous QSOs at z= 2.7. They found
a QSO–LBG cross-correlation length of =  -r h7.3 1.3 Mpc0

1

for a fixed slope of g = 1.5 and claimed that this measurement is
in agreement with the Adelberger & Steidel (2005) results.
Additionally, they computed a halo mass for those QSOs of log
( = )M M 12.3 0.5halo , which is in agreement with the halos
masses inferred for fainter QSOs at the same redshift (White
et al. 2012).

Theoretical considerations suggest that high-redshift QSOs
live in massive dark matter halos, but not necessarily the most
massive ones (Fanidakis et al. 2013). However, a high signal-
to-noise clustering analysis is necessary to confirm this
hypothesis.

In addition to these statistical clustering analyses, many
studies of individual AGN environments have been conducted.
The population of AGNs whose environments have been
studied most intensively are the high-redshift radio galaxies
(HzRGs) at ~ –z 2 4, which have been shown to often reside in
proto-cluster environments (e.g., Intema et al. 2006; Venemans
et al. 2007; Overzier et al. 2008; Hennawi et al. 2015). At
higher redshifts the environments of other classes of AGNs,
such as optically selected QSOs, are currently less well
constrained. Most previous work focuses on searching for
galaxies around the most distant z 5 QSOs, and these results
paint a diverse and rather confusing picture: Stiavelli et al.
(2005), Zheng et al. (2006), Kashikawa et al. (2007), Utsumi
et al. (2010), and Morselli et al. (2014) find quite a strong
enhancement of galaxies compared to control fields around
~ –z 5 6 QSOs, whereas Willott et al. (2005), Bañados et al.

(2013), Simpson et al. (2014), and Mazzucchelli et al. (2017)
find no significant excess of galaxies around QSOs at ~ –z 6 7.
Kim et al. (2009) studied five QSO fields at ~z 6 and reported
a mix of overdensities and underdensities, and Husband et al.
(2013) found galaxy overdensities in ~z 5 QSOs environ-
ments, but they noted that even some randomly chosen patches
of sky without AGN signposts (“blank fields”) at the same
redshift contain similar galaxy overdensities. Indeed, surveys
of a few deg2 for ~z 6 LBGs or Lyman alpha emitters (LAEs)
have identified comparable or even more overdense regions in
blank field pointings (e.g., Ouchi et al. 2005; Ota et al. 2008;
Toshikawa et al. 2012). These mixed results at z 5 do not yet
provide compelling evidence that QSOs inhabit massive dark
matter halos at the highest redshifts, and more work is clearly
required.
One complication of these studies is that the majority of

them are focused on dropout selection, which selects galaxies
over a broad redshift range of D ~z 1 (e.g., Ouchi et al.
2004a), corresponding to~ -h520 1 cMpc at z=4. A large part
of such a volume is unassociated with the QSO, which
introduces projection effects that dilute the overdensity around
the QSO, making it much more difficult to detect. Furthermore,
most works at the highest redshifts have focused their searches
around a handful of individual QSOs, and given the poor
statistics and large sample variance (which is typically not
taken into account), this could preclude the detection of an
overdensity.
In this paper we study the environs of QSOs at z∼ 4. There

are several advantages to working at this redshift. First, it is the
highest redshift at which auto-correlation measurements exist
for QSOs (Shen et al. 2007), establishing that they reside
in massive dark matter halos. Second, the luminosity function
and clustering properties of z∼ 4 galaxies are also well
known (e.g., Ouchi et al. 2004a, 2008; Shen et al. 2007). The
well-measured luminosity function allows us to accurately
determine the background number density, essential for a
robust clustering analysis. Furthermore, the fact that the auto-
correlation of QSOs and galaxies are both known gives us an
idea of what the cross-correlation should be. In practical terms,
redshift z∼ 4 also represents a compromise since the dark
matter halos hosting QSOs are still expected to be massive
(Shen et al. 2007), while at the same time the characteristic
galaxy luminosity *L can be imaged with much shorter
exposure times than galaxies at z 5, allowing us to observe a
larger statistical sample of QSO fields. Note that at z∼ 4 the
universe was only ∼1.5 Gyr old, and only 0.5 Gyr has elapsed
since the end of reionization. Thus, our QSO targets are young
objects residing in large-scale structures that are still forming.
Here we present VLT/FORS imaging of six z∼ 4 luminous

QSOs fields. We use a novel narrow-band (NB) filter technique
designed to select LBGs in a narrow redshift range (D ~z 0.3)
around these QSOs. This minimizes the line-of-sight contam-
ination, dramatically reducing the projection effects that are
inherent in broad-band selection. We measure the QSO–LBG
cross-correlation function at z∼ 4 for the first time, to
determine whether luminous QSOs at z∼ 4 are surrounded
by overdensities of LBGs. The sample of six QSOs studied
allows us to beat down the noise from limited numbers of
galaxies and cosmic variance.
The outline of this paper is as follows. In Section 2 we

describe the QSO target selection, we explain the novel NB
imaging technique used to select LBGs, and we give details of
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the imaging observations, data reduction, and photometry. We
present the color criteria used to select LBGs and compute the
redshift selection function of the sample in Section 3. The
measurements of the QSO–LBG cross-correlation function and
LBG auto-correlation in QSO fields are presented in Section 4,
where we also estimate the power-law correlation function
x = g-( ) ( )r r r0 parameters r0 and γ. We test the robustness of
our results in Section 5, and summarize and conclude in
Section 6.

Throughout this paper magnitudes are given in the AB
system (Oke 1974; Fukugita et al. 1995) and we adopt a
cosmology with = - -H h100 km s Mpc0

1 1, W = 0.26m and
W =L 0.74, which is consistent with the nine-year Wilkinson
Microwave Anisotropy Probe observations (Hinshaw et al.
2013). Comoving and proper Mpc are denoted as “cMpc” and
“pMpc,” respectively.

2. Observations and Data Reduction

The data set presented in this section was obtained from the
ESO Archive (Program ID: 079.A-0644, P.I: Rix). This
program was designed to search for LBGs in z∼ 4 QSOs
environments using a novel NB filter technique. The aim was
to test whether QSOs with the most massive BHs at z∼ 4 live
in the most massive dark matter halos.

2.1. QSO Target Selection

The PI of this program designed a custom set of filters (see
Section 2.2 for details) to search for LBGs in QSO
environments. Using experiments with mock catalogs, they
showed that this filter set allowed one to select galaxies with
= z 3.78 0.08. Given this small redshift interval, and with

the goal of stacking the galaxy number counts from several
QSO fields, the QSO targets were selected to span a narrow
redshift range of D =z 0.04, centered at z= 3.78.

Taking advantage of the large sample of QSOs from the
Sloan Digital Sky Survey (SDSS; York et al. 2000), they first
selected all QSOs in this redshift range. Given the goal of
studying the most massive dark matter halos at z∼ 4, believed
to be correlated with the most massive BHs, only QSOs with

 M M10BH
9 were selected. As is typical, MBH was

estimated from the emission line widths and continuum
luminosities using the so-called single-epoch reverberation
mapping technique (Vestergaard 2002). One of the targeted
QSOs was not selected from SDSS, but it was added to the
sample because it belongs to the redshift and MBH range of
interest.5 The final sample was comprised of six bright QSOs
with <i 20.2 mag.

We verified that none of the QSOs had a detected radio
emission counterpart at 20 cm by checking the Faint Images of
the Radio Sky at Twenty-centimeters (FIRST Becker
et al. 1995) catalog, since it is known that radio emission
could strongly affect the galaxy clustering properties in AGN
environments (e.g., Venemans et al. 2007; Shen et al. 2009).
The QSO properties are summarized in Table 1, where we
show more recent MBH estimates taken from Shen et al. (2011).

2.2. A Novel Method to Select LBGs

The traditional Lyman break technique used to select high-
redshift galaxies relies on the detection of the 912Å flux break
(the so-called Lyman limit break) observed in galaxies due to
the absorption of photons with l < 912 Å by neutral hydrogen
in their interstellar and circumgalactic media. For this selection
method, two bands are typically used to bracket the break,
one located at l < +( )z912 1 Å, and the other at l >

+( )z912 1 Å, where z is the redshift of the galaxies in
question. Given this configuration, a non-detection is expected
in the band blueward of the break, whereas a clear detection is
expected redward of it, such that a very red color will be
measured. Additionally, a third band is added at longer
wavelengths in order to eliminate possible contaminants. This
method was originally explored using the UGR filter system to
detect galaxies at z∼ 3 (Steidel et al. 1995, 1996, 2003);
however, it was subsequently generalized to higher redshifts
( ~ –z 4 5) using a filter set shifted to longer wavelengths
(Steidel et al. 1999; Ouchi et al. 2004a).
At higher redshifts ( z 4), a second break in galaxy spectra

becomes important. The Lyα opacity of the intergalactic
medium (IGM) rapidly increases with redshift, such that a large
fraction of photons emitted by galaxies with l < 1216 Å are
absorbed by neutral hydrogen. This implies a break at
l = 1216 Å (the so-called Lyα break), which can be used to
select galaxies analogous to the traditional Lyman break
technique described above. This Lyα break detection technique
has been used to successfully identify galaxies and QSOs at
z 6 (Fan et al. 2000; Bouwens et al. 2007, 2010; Oesch

et al. 2010; Bañados et al. 2016).
In order to achieve our goal of selecting galaxies physically

associated with high-redshift QSOs, we need to select LBGs
within a narrow redshift range centered on the QSO. However,
the Lyman break method (using either the Lyman limit or Lyα
breaks) efficiently selects LBGs in a broad redshift slice of
D ~z 1 (e.g., Ouchi et al. 2004a; Bouwens et al. 2007, 2010),
corresponding to ~ -h520 1 cMpc at z=4. For such a broad
redshift range, the overdensity signal around the QSO will be
significantly diluted by the projection of galaxies at much
larger distances, hundreds of comoving Mpc away.
In order to address this problem, the PI proposed a novel

selection technique analogous to the Lyα break method, but with
the difference that the selection of LBGs is performed using two
NB filters located very close to each other, instead of using broad
bands. These filter curves are compared to those used for
traditional LBG selection in Figure 1. The advantage of using NB
filters is that they allow one to select LBGs in a much narrower
redshift range of D ~z 0.3 (∼167 cMpc at z= 3.78) (see
Section 3.4), which is ∼3.3 times smaller than the redshift range
covered when broad bands are used, allowing one to minimize
line-of-sight projections from physically unassociated galaxies.
This method has never been used before to select LBGs, and

the filters used to perform the observations were custom
designed to select LBGs at ~z 3.78 centered on the redshift of
our six QSO targets. The two NB filters used in this study are

l =(NB 5657571 eff Å, FWHM=187Å), and l =(NB596 eff

5947 Å, FWHM=116Å), which were designed to have a gap
between them to exclude the Lyα emission line at z= 3.78.
Then the galaxy selection is not influenced by the Lyα line-
strength, but rather is sensitive to the Lyα break. Additionally,
data were collected in the broad-band filter l =(rGUNN eff

6490 Å) to help remove low-redshift interlopers.
5 Properties of this QSO were measured by McLeod & Bechtold (2009) and
are shown in Table 1.
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2.3. VLT Imaging and Data Reduction

Imaging observations were acquired on three consecutive
nights during 2007 September 9–11, using the FOcal Reducer
and low dispersion Spectrograph 1 (FORS1; Appenzeller &
Rupprecht 1992) instrument on the Very Large Telescope
(VLT). The field-of-view (FOV) of FORS1 is
6.8×6.8 arcmin2, which corresponds to ~ ´3.0 3.0 pMpc2

at z= 3.78. The instrument pixel scale is 0.251 arcsec/pixel for
images binned 2×2.

Each QSO field was observed in the three filters shown in
Figure 1. The total exposure time for the filters was 8000s,
4000s, and 1800s for NB571, NB596, and rGUNN, respectively.
Observations were acquired in shorter individual dithered
exposures, in order to fill the gap between the CCDs and to
facilitate the data reduction process (cosmic ray and bad pixel
rejection, building a superflat, etc.). A spectrophotometric
standard star was observed only on the second and third night.
The typical seeing during the three nights was 0.6–0.8 arcsec.

Science images were reduced using standard IRAF6 tasks
and our own custom codes written in the Interactive Data

Language (IDL). The reduction process included bias subtrac-
tion and flat fielding. As our images exhibited illumination
patterns, we performed the flat fielding with superflat images,
created using the unregistered science frames. For that, we first
masked all the objects out and then combined the science
frames with an average sigma-clipping algorithm.
SExtractor (Bertin & Arnouts 1996) was used to create a

source catalog for each individual image and then SCAMP
(Bertin 2006) was used to compute an astrometric solution,
using the SDSS-DR7 r-band star catalogs as the astrometric
reference. Finally, the individual images were sky-subtracted,
re-sampled, and median-combined using SWarp (Bertin
et al. 2002), and then the noisy edges of the combined images
were trimmed.
For the flux calibration, we only had observations of the

spectrophotometric standard star SA109-949 at the beginning
of the last two nights. The tabulated spectrum of this star has a
coarse sampling of 25Å (Stone 1996), which is not suitable
when NB filters are used. For the first night, spectrophotometric
standard stars were not observed, but we took advantage of two
existing SDSS star spectra in one of the fields taken during that
night. The coordinates of the stars with available SDSS spectra
are =R.A. 21.014star1 , =decl. 0.740872star1 and =R.A.star2
21.057, =decl. 0.686577star2 and the median signal-to-noise
ratios (S/Ns) per angstrom of their spectra at the wavelengths
of interest were 13.3 and 8.5, respectively.
The flux calibration process was as follows. For the first

night calibration we convolved the SDSS star spectra with the
three filters’ curves in order to obtain standard magnitudes.
These magnitudes were compared with the stars’ instrumental
magnitude (obtained using the MAG_AUTO of SExtractor on
the combined science images) to obtain the zero points (ZPs)
for each filter. A mean final ZP was computed from the two
stars and the typical error for this ZP measurement was
∼0.08 mag. For the second and third night calibration, we used
the spectrum of the observed spectrophotometric star to
convolve it only with the broad-band filter curve to obtain
the rGUNN ZP. The error in this computation was ∼0.02 mag.
After that, the differential ZPs from the first night were used to
determine the NB ZPs for the second and third nights, for
which we obtained a typical error of ∼0.11 mag.

2.4. Photometric Catalogs

Object detection and photometry were performed using
SExtractor in dual mode, with the rGUNN image as the detection
image. We set the parameters BACK_SIZE and BACK-
PHOTO_THICK such that the background was calculated in

Table 1
Targeted QSOs Properties

Field R.A. (J2000) Decl. (J2000) Redshift i log( )M MBH
a

SDSSJ0124+0044 01:24:03.78 00:44:32.67 3.834 17.99 10.15±0.03
SDSSJ0213–0904 02:13:18.98 −09:04:58.28 3.794 19.03 9.57±0.18
J2003–3300b 20:03:24.12 −32:51:45.02 3.773 17.01 9.7
SDSSJ2207+0043 22:07:30.48 00:43:29.37 3.767 19.47 9.13±0.16
SDSSJ2311–0844 23:11:37.05 −08:44:09.56 3.745 20.18 9.41±0.24
SDSSJ2301+0112 23:01:11.23 01:12:43.34 3.788 19.44 8.55±0.80

Notes.
a Virial BH masses from Shen et al. (2011).
b This QSO was not selected from SDSS, but it was targeted because it belongs to the redshift range of interest. The properties shown here are from McLeod &
Bechtold (2009), who do not report the error for the BH mass measurement.

Figure 1. Upper panel:filter configuration used in this study, shown on an
LBG simulated spectrum at z = 3.78 (see Section 3.1 for the simulated
spectrum details). The NBs were designed specially for this program to identify
LBGs at ~z 3.78 by detecting the Lyα break. This filter configuration selects
galaxies in a quiet narrow redshift slice ofD ~z 0.3. Lower panel: example of
a filter set used to identify galaxies with the standard Lyman break technique
that is based in the detection of the Lyman limit break. The filter curves shown
are those used by Ouchi et al. (2004a) to find LBGs at z ∼ 4 over a redshift
slice of D ~z 1.0.

6 Image Reduction and Analysis Facility.
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regions of 64 pixels in size and then recomputed locally in
an annulus area of 24 pixels of thickness centered around
the object. The parameters DETECT_MINAREA and
DETECT_THRESH were set such that every group of at least
five contiguous pixels having a value above s1.5 (with σ the
background rms) was considered as an object.

In order to ensure an adequate color measurement we
needed to carry out photometry in the same object area for the
three different filters. Therefore, we convolved our images
with a Gaussian kernel to degrade its point-spread function
(PSF) to match it with the worst seeing image for each field.
Then, the object magnitudes were estimated by the MAG_A-
PER parameter of SExtractor using a fixed aperture of 2
diameter. This magnitude is not necessarily the total
magnitude of the object, but is used to compute the colors
of galaxies. With this choice, if galaxies at z∼ 4 are
unresolved by the PSF, we are including the flux out to

s~3 of the object’s PSF (for a seeing of 0. 8). This ensures
that we measure the majority of the object’s flux, as well as
avoid contamination from other close sources. Magnitudes of
objects not detected, or detected with S/N < 2 either in NB571

or NB596, were assigned the value of the corresponding s2
limiting magnitude.

Here, the S/N of each object is defined as the ratio of counts
in the 2 aperture, given by SExtractor, to the rms sky noise in
the aperture. This rms sky noise is calculated using an IDL
procedure, which performs 2 aperture photometry in ∼5000
different random positions in the image (avoiding the locations
of objects) to compute a robust measurement of the mean sky
noise. The rms sky noise is calculated as the standard deviation
of the distribution of mean values.

Magnitudes were corrected for extinction due to airmass
using the atmospheric extinction curve for Cerro Paranal (Patat
et al. 2011), and by galactic extinction calculated using the
Schlegel et al. (1998) dust maps and extinction laws of Cardelli
et al. (1989) with =R 3.1V . The error in the measured
magnitude was computed by error propagation, with the object
flux error given by the rms noise N in the aperture computed as
we described above.

The mean s4 limiting magnitude of the reduced images was
26.06 for NB571, 25.53 for NB596, and 25.82 for rGUNN for 2
diameter apertures. These limiting magnitudes are listed in
Table 2 for each field.

For each field, we computed the completeness of the
photometric catalogs for the image detection rGUNN. To do
this, we linearly fitted the logarithmic magnitude distribution
in the magnitude range < <r21.0 24.5GUNN where the
photometric catalogs are assumed to be 100% complete.
We extrapolated the linear fit to fainter magnitudes and
measured the completeness as a function of magnitude as

the ratio of the histogram relative to that linear fit. We found
that at our s4 limiting magnitude the completeness was on
average ∼12%.

3. LBG Selection at z= 3.78

LBG candidates at z= 3.78 were selected using the Lyα
break technique adapted to our custom filters, which target the
Lyα break at l = +- ( )z1 1216rest frame Å. Our two NB filters
were chosen to bracket this break, and thus we expect that
LBGs at z= 3.78 will have red colors in -NB NB571 596. But if
we used only this color criteria, we could be including some
low-redshift galaxy interlopers in the sample. In order to
remove them, a third filter was used to give a measurement of
the LBG continuum slope using the - rNB596 GUNN color.
Since the filters used in this study are not standard, the

color criteria to select LBGs are unknown. We also do not
know what colors low-redshift galaxy contaminants have in
this filter system. For this reason, we must explore how
galaxies populate the color space in order to select a complete
LBG sample while avoiding low-redshift interlopers. Further-
more, in order to perform an LBG clustering analysis in QSO
fields we need to know the number density of LBGs expected
at random locations in the universe (i.e., in fields not
specifically targeting QSOs, also here referred to as “blank
fields”). When a standard filter set is used (e.g., LBG selection
using broad-band filters), this number density can be
computed directly from the LBG luminosity function
measured from work using similar filters. However, in our
case if we compute the number density from this LBG
luminosity function, we have to correct this quantity to take
into account the fact that our filter system is mapping a
different survey volume and does not necessarily identify all
of the LBGs obtained by broad-band selection. Specifically,
we need to (a) determine what fraction of LBGs we are
detecting at any redshift (i.e., the completeness) and (b)
determine the redshift range over which we are selecting
LBGs (Dz). Both of these goals can be achieved by
performing an accurate computation of the redshift selection
function f ( )zz , defined as the LBG completeness as a function
of redshift.
In order to perform the optimal LBG selection and compute

f ( )zz , we conducted detailed simulations to model the
distribution of LBG colors in the color-space. In this section
we detail how the color modeling was performed, we study
what contaminants could be affecting our LBGs selection, and
we define color criteria to select LBGs at z= 3.78. Finally, we
present the redshift selection function providing the complete-
ness as a function of redshift for the sample.

3.1. LBG Color Modeling

We performed a Monte Carlo simulation of 1000 LBG
spectra at each redshift, which were created to have different
UV continuum slopes and Lyα equivalent widths ( aEWLy ),
such that they reproduce the space of possible LBG spectra
informed by our knowledge of LBG properties.
Each simulated rest-frame spectrum was created in the

following way. As a starting point, we considered a template
galaxy spectrum generated from Bruzual & Charlot (2003)
population synthesis models,7 corresponding to an

Table 2
s4 Limit Magnitudes per Field Measured in a 2″Diameter Aperture and

Seeing Measured on the rGUNN Images

Field NB571 NB596 rGUNN Seeing [″]

SDSSJ0124+0044 26.04 25.51 25.86 0.83
SDSSJ0213–0904 26.18 25.71 25.92 0.89
J2003–3300 26.05 25.44 25.62 0.45
SDSSJ2207+0043 26.03 25.38 25.78 0.53
SDSSJ2311–0844 26.02 25.60 25.84 0.76
SDSSJ2301+0112 26.04 25.55 25.91 0.70

7 Obtained from http://bruzual.org/.
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instantaneous burst model with an age of 70 Myr, a Chabrier
(2003) IMF, and a metallicity of 0.4 Ze, as expected for
LBGs at z∼ 4 (Jones et al. 2012). We assumed a power-law
UV continuum for this template with amplitude A and a slope
aBC, such that we modeled its flux as l l= a( )F ABC BC. We fit
this model to the template spectrum over the UV continuum
range (here defined as 1300Å< λ< 2000Å) by least-
squares minimization to obtain the best fit A and aBC

parameters.
First, we modified the UV slope of this template by

multiplying its flux by la a- BC in order to obtain a spectrum
with a power-law UV continuum given by laA . The new slope
α was chosen as a value taken randomly from a Gaussian
distribution with mean m = -1.676 and s = 0.39. These
values are motivated by Bouwens et al. (2009), who presented
the UV continuum slope distribution of LBGs at z∼ 4 for
samples selected in different magnitude ranges.

Second, we added a Gaussian Lyα line with rest-frame
central wavelength l =a 1215.7Ly Å, standard deviation s aLy

and amplitude B, which adjusts the intensity of the line. For all
the simulated spectra we used a fixed s =a 1Ly Å, which agrees
with the s aLy of the composite spectrum of LBGs at z∼ 4
(Jones et al. 2012). The B value was adjusted to model a Lyα
line with an aEWLy value drawn randomly from a distribution
chosen to agree with observations of LBGs. The aEWLy

distribution was given by a Gaussian core plus a tail to large
negative EWs to represent strong line emitters. For the
Gaussian core we adopted a mean m = -25 Å and standard
deviation σ=40Å(rest-frame), based on the measurements of
Shapley et al. (2003), who studied the spectra of 811 LBGs at
z∼ 3. We thus assume that the Gaussian core of the LBG

aEWLy distribution does not evolve significantly from z∼ 3 to
z∼ 4. For the tail representing strong line emitters, we modified
the Gaussian by adding an exponential function with rest-frame

aEWLy scale length of = -W 640 Å, as presented in Ciardullo
et al. (2012). In this way our model of line emission
encompasses both LBG and LAE spectra. Figure 2 shows the

aEWLy probability distribution function used to simulate our

spectral models. The aEWLy are defined as

ò l= -a
a ( )

F

F
dEW , 1Ly

Ly

cont

where aFLy is the flux of the aLy line (with the continuum
subtracted), which is given by a Gaussian with amplitude B, as
we described above, and Fcont is the flux of the continuum given
by laA . Note that we defined negative values of aEWLy for
emission lines and positive for absorption lines.
Once α and aEWLy were chosen for a given simulated

spectrum, we dust-attenuated it using the starburst reddening
curve from Calzetti et al. (2000) and adopted a color excess
value of - =( )E B V 0.16 according to the values estimated
for LBGs at z∼ 3 (Shapley et al. 2003).
After the dust-attenuation was applied, we modeled the fact

that only a small fraction of Lyman limit photons escape LBGs
with an escape fraction parameter l<fesc

912. Although this value
is observationally poorly constrained, studies suggest it is in the
range 0.04–0.14 (Fernández-Soto et al. 2003; Ouchi et al.
2004a; Shapley et al. 2006). We assumed a fixed value of

=l<f 0.05esc
912 , and multiplied the spectrum at l 912 Å by

this value. We also tested our results using different values of
l<fesc

912, finding that the colors of simulated galaxies are
relatively insensitive to the exact value of l<fesc

912 used, because
these wavelengths are subsequently significantly attenuated by
the IGM transmission function (see below).
Finally, we redshifted each model spectrum to different

redshifts on a grid with a grid spacing of 0.02 and ranging from
z= 3.2 to z= 4.4. In the redshifting process we used the IGM
transmission model l( )Tz for the corresponding redshift z from
Worseck & Prochaska (2011) to attenuate the flux blueward of
the aLy line.8 Note that in principle we should attenuate both
the continuum blueward of the aLy line and the line itself;
however, the aEWLy values used in this simulation are taken
from the literature, which are observed values that are not
corrected for IGM attenuation, such that this line emission is
effectively already attenuated. In Figure 3 we show some

Figure 2. Normalized probability distribution function of aEWLy used for the
simulated spectra, where negative values correspond to emission lines. aEWLy

was chosen from a Gaussian distribution with rest-frame mean m = -25 Å and
s = 40 Å (Shapley et al. 2003) plus an exponential tail of high aEWLy values
with scale length of = -W 640 Å (Ciardullo et al. 2012).

Figure 3. Example of ten rest-frame simulated spectra using our Monte Carlo
simulation. The spectra have been normalized to have the same flux value at
l = 1245 Å. The subplot in the upper right corner shows a zoom-in of the
region of the aLy line.

8 Kindly provided to us by G. Worseck.
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examples of our rest-frame simulated spectra, which have been
normalized to have the same flux at l = 1245 Å.

At each redshift, we integrated the spectra against our three
filter transmission curves to obtain the fluxes and then the LBG
colors. In order to model the impact of noise, we added
photometric errors to the simulated LBG photometry. To this
end we first assigned an rGUNN magnitude to each simulated
object by randomly drawing a value from the z∼ 4 LBG
luminosity function, integrated over the same magnitude range
as our LBG sample (  r24.0 25.6GUNN or * L L0.76
3.5; see Section 3.3).9 We also weighted the luminosity
function by the completeness of the source detection at each
apparent magnitude and for each field (computed in
Section 2.4), which takes into account the fact that the fraction
of sources detected depends on their magnitude, such that the
photometric catalog is complete for bright sources but less
complete at the faint end. In this way the incompleteness of our
photometry is also factored into our color modeling.

Based on the simulated LBG colors and the chosen rGUNN
value, we then determined the magnitude in the other two filters
NB571 and NB596 for each spectrum in each redshift bin.
In order to construct a noise model, we selected a galaxy
sample from our photometric catalogs, and computed the
median magnitude error as a function of the magnitude for each
filter (with the magnitude error computed as we explained in
Section 2.4). Finally, we assigned random Gaussian-distributed
magnitude errors using our median relations, and then added
this noise to the model photometry that defined the final
photometry of the simulated spectra. The colors for the 1000
simulated spectra at each redshift are shown in Figure 4. We

also computed the median of our 1000 rest-frame Monte Carlo
spectra, redshifted it, and obtained the colors at each redshift to
compute the median evolutionary track of LBG colors, shown
as the black solid line in Figure 4.
Figure 4 indicates that the median colors of LBGs at z= 3.78 are

- =NB NB 1.05571 596 , and - =rNB 0.16596 GUNN . However,
if we consider the intrinsic scatter in LBG properties (continuum
slope and aEWLy ) and photometric uncertainties, the z 3.78
LBGs (indicated by green points) span a wider color range with

-NB NB 0.5571 596 and  - - r0.6 NB 0.8596 GUNN . In
principle, we should select LBGs in this broad selection region to
obtain a highly complete sample; however, we also need to take
into account the colors of low-redshift galaxies in our filter system
to define the final selection criteria. We perform this analysis in
Section 3.2, where we also test our LBG color modeling by
reproducing the LBG evolutionary track presented in previous
work using broad-band LBG selection.

3.2. Low-redshift Galaxy Colors

We use template galaxy spectra to develop a basic under-
standing of how low-redshift galaxies populate the color–color
diagram in our new filters. We use a set of five commonly used
templates for estimating photometric redshifts, such that they
span the range of galaxy spectral energy distributions (SEDs).
The templates are from the photo-z code EASY (Brammer
et al. 2008), which are distilled from the PEGASE spectral
synthesis models, and correspond to elliptical, Sa, Sb, Sc, and
irregular galaxy spectra.
We redshifted these template spectra from z=0 to z=3,

and integrated them over our filter transmission curves to
generate their evolutionary track. Note that we need not
attenuate these spectra by the IGM transmission function l( )Tz ,
since our NB filters never cover rest-frame wavelengths lower
than 1216Å for the low redshifts considered. In Figure 5 we

Figure 4. Color–color diagram showing the simulated colors for 1000 LBG spectra, plotted as redshift color-coded points according to the color bar. The median LBG
evolutionary track is plotted as a black curve. The filled points over this curve indicate the median LBG colors at different redshift ranging from 3.6 to 4.2. The largest
circle shows the exact position of the median z = 3.78 LBG colors. The dashed line indicates the selection region used to select LBGs according to Equation (2).

9 Given that for each field we reached slightly different limiting magnitudes,
we simulated the LBG photometry field by field according to their respective
rGUNN limiting magnitudes. This resulted in a slightly different redshift
selection function for each field.
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show the evolutionary tracks for different galaxy types together
with the median LBG evolutionary track that we computed in
Section 3.1. We also show the mean colors of stars in our
diagram, which were computed by using SDSS template
spectra of 23 different stars,10 including O, B, A, F, G, K, M,
and L-type stars as well as white dwarfs, carbon, and K-type
subdwarf stars.

In order to test our Monte Carlo simulation as well as the
evolutionary tracks for low-redshift galaxies, we used our 1000
simulated spectra at each redshift to compute the median LBG
evolutionary track in the standard BRi filter set used to select
LBGs at z∼ 4 (see Figure 1) by Ouchi et al. (2004a). We also
computed the evolutionary track of these low-redshift galaxies
in the standard LBG filters in the same way as described above.
These results are shown in Figure 6, where we also overplot the
selection region used by Ouchi et al. (2004a) to select z∼ 4
LBGs. We find that the median LBG evolutionary track from
our Monte Carlo model lies within the Ouchi et al. (2004a)
selection region, and selects LBGs at z 3.5 as claimed. Note
also that our LBG evolutionary track agrees well with the
Ouchi et al. (2004a) evolutionary track (see Figure 4 of their
paper) determined from a much simpler model of LBG spectra
and IGM transmission. In addition we see that the evolutionary
tracks of low-redshift galaxies lie comfortably outside the BRi
LBG selection region as claimed by Ouchi et al. (2004a).

However Figure 5 shows that in our NB filter set, some of
the low-redshift galaxies have similar colors as z= 3.78 LBGs,
which suggests that our new filter configuration could make it
challenging to select a sample of LBGs at z= 3.78 with high
completeness and at the same time high purity. When we use
NB filters the low-redshift galaxy colors are located in a wider

region in the color–color plot in comparison with the location
of the color locus of contaminants when broad-band filters are
used. We attribute this to sensitivity of the NB filters to features
in the galaxy spectra such as emission or absorption lines. In
the case of broad bands these features are diluted by averaging
over large regions of spectra, but for NB the features result in
large excursions in color with changing redshift, making the
low-redshift galaxy locus extend over a larger region of color
space that overlaps with the colors of z= 3.78 LBGs.
Given that LBG colors at z= 3.78 span the range

-NB NB 0.5571 596 and  - - r0.6 NB 0.8596 GUNN (see
Figure 4), there are several types of contaminants that could be
affecting our LBG selection. Their colors are indicated by
points on the respective low-redshift galaxy evolutionary tracks
labeled by letters in Figure 5, and some examples are shown in
Figure 7. The first type are red galaxies at ~z 0.45 having a
large l ~ 4000RF Å Balmer break and strong calcium H and K
absorption. This break is located just between our two NBs,
so they present red colors (point C on the brown curve in
Figure 5). The second type of interlopers are star-forming
galaxies at ~z 0.60 with strong [O II] 3727Å emission lines.
If NB596 is located just over this line, and NB571 over the
continuum, we again detect red colors (point A on the green
curve in Figure 5). The third type of interlopers are galaxies
at ~z 1.04 with strong Mg I and Mg II absorption lines at
l = 2852RF Å, and l = 2799RF Å, respectively, in combina-
tion with the l ~ 2900RF Å break. When NB571 is located over
this absorption and NB596 falls on the continuum, then red
colors are detected (points E and G on the magenta and brown
curves, respectively, in Figure 5). Other interlopers are galaxies
with strong flux breaks redshifted just between our NB filters.
Examples are galaxies at ~z 1.23 with a large l ~ 2640RF Å
break (points D and F on the magenta and brown curves,
respectively, in Figure 5) and galaxies at ~z 1.83 with a strong
break at l ~ 2085RF Å (point B on the brown curve in
Figure 5).

3.3. Selection Region and LBG Sample

As we are interested in measuring the clustering properties of
LBGs at z= 3.78, we need to select a sample with high

Figure 5. Evolutionary tracks of low-redshift galaxies redshifted from z=0 to
z=3. We plot as brown, magenta, orange, blue, and green curves the
evolutionary track of elliptical, Sa, Sb, Sc, and irregular galaxies, respectively.
We overplot the track of LBGs computed as was explained in Section 3.1 as a
black curve. Filled circles over the black curve indicate colors of LBGs from
redshift 3.6 to 4.0, and the largest black point indicates the exact position of the
color of LBGs at z = 3.78. Filled circles labeled with letters over the low-
redshift galaxies evolutionary tracks indicate the colors of some contaminants
that could be affecting our selection: galaxies at z = 0.60 (A), z = 1.83 (B),
z = 0.45 (C), z = 1.23 (D and F), and z = 1.04 (E and G). Red diamonds show
the mean colors of 23 different type of stars, including O, B, A, F, G, K, M, and
L-type stars as well as white dwarfs, carbon, and K-type subdwarf stars. The
dashed line indicates the selection region used to select LBGs according to
Equation (2).

Figure 6. Same as Figure 5 but using the filter system used by Ouchi et al.
(2004a) to select LBGs at z ∼ 4 (broad-band filters B, R, i). Filled circles over
the black curve indicate colors of LBGs from redshift 3.2 to 3.9. Filled circles
over the curve of the low-redshift galaxies indicate colors from redshift 0.0 to
3.0. The dashed line indicates the region used Ouchi et al. (2004a) to select
LBGs in their work.

10 Obtained from http://classic.sdss.org/dr5/algorithms/spectemplates/.
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completeness and purity. In order to avoid low-redshift
contaminants, we were forced to choose a smaller selection
region in the color–color diagram, which results in relatively
low completeness, but it ensures that the sample is not highly
contaminated.

First, we defined two vertical color cuts in Figure 4, one to
the left of the median LBG colors at z= 3.78 and one to the
right. The first cut is meant to exclude LBGs located in the
upper left region of the diagram, which mostly corresponds to
LBGs at ~z 3.9 with strong Lyα line emission. The second
cut avoids LBGs at >z 3.9. A third color cut defines a lower
limit for -NB NB571 596, which ensures we are detecting the
Lyα break, while at the same time avoiding LBGs at z 3.7.
We used a diagonal color cut to most effectively avoid the
contamination of low-redshift galaxies (see Figure 5), while at
the same time including most of the LBGs at z= 3.78, thus
maintaining the highest completeness possible.

We also tested several different color criteria to select LBGs.
In Section 5.2 we will further discuss our color selection,
contamination by low-redshift galaxies, and the impact that
contamination can have on our clustering measurements. There
we argue that the choice of color selection that we present here
selects a reasonably complete LBG sample (see Section 3.4 for
details about the completeness of the sample) with high purity.
Our final set of color cuts is shown in Figure 4, and defined by
the following relations:

- >
- < - <

- > - +( ) ( )
r

r

NB NB 1.2
0.6 NB 0.8

NB NB 0.7 NB 0.9. 2

571 596

596 GUNN

571 596 596 GUNN

We selected LBGs based on our galaxy photometry, but
required sources to have S N 4.0 in both the NB596 and
rGUNN filters, to ensure a solid detection of the LBG continuum.
In order to reduce contamination by false detections, we only
considered objects that have FLAGS=0 in SExtractor, which

excluded objects that were blended, saturated, truncated (too
close to an image boundary), or affected by very bright
neighboring objects. Bright stars in our images were masked in
order to avoid spurious object detection due to contamination
from their stellar flux. This procedure resulted in a set of masks
indicating where we were able to detect galaxies, which we use
later in our clustering analysis to compute the effective area of
our survey.
We also imposed a lower limit on the magnitude in order to

exclude bright, low-redshift interloper galaxies from our
selection. Thus we only considered objects with magnitudes
fainter than =r 23.97GUNN , corresponding to LBGs with

*~L L3.5 . We chose this value by computing the LBG
luminosity function at z∼ 4, and finding the bright-end cut at
which we would lose no more than 1% of the galaxies. In other
words, 99% of the total number of LBGs have magnitudes
between our bright-end cut of =r 24.0GUNN and the limiting
magnitude =r 25.82GUNN (mean limit magnitude at s4 for a 2
diameter aperture) of our images, which corresponds to

*=L L0.76 . In this way we can safely assume we are
excluding only extremely rare, bright LBGs. For the LBG
luminosity function we used the Schechter parameters from
Ouchi et al. (2004a) who studied the photometric properties
based on a large sample of ∼2200 LBGs at z∼ 4. The values
used are *f = ´ - h2.8 10 3

70
3 Mpc−3, * = -M 20.61700 mag,

and a = -1.6.
Given all of these selection criteria and the color cuts defined

in Equation (2), we selected LBGs in each of our fields. We
compute the total area of our survey by adding the effective
area of each individual field, which is defined by subtracting
the masked area from the total area of the image. The the total
area of our survey is 232.7 arcmin2 corresponding to an
average area per image of 38.79 arcmin2 (recall the FOV of
FORS1 is 6.8×6.8 arcmin2 or 46.24 arcmin2). We show
color–color diagrams of objects detected in all six of our fields

Figure 7. Examples of interlopers that could affect our LBGs selection. We show the galaxy spectra and the position of our three filters over it. Top left panel:the
spectra of an elliptical galaxy at z = 0.45, with a strong Balmer break located at l = 5840obs Å and intense calcium H and K absorption. Top right panel:the spectra
of a galaxy at z = 0.60, with intense O II emission line at l = 5925obs Å. Bottom left panel:the spectra of a galaxy at z = 1.04, with Mg I and Mg II absorption at
l ~ 5650obs Å. Bottom right panel:the spectra of a galaxy at z = 1.23, with a large break at l = 5887obs Å.
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in Figure 8. We found a total of 44 LBGs (see Table 3)
corresponding to a mean number density of 0.19
LBGs arcmin−2. Image cutouts in our three filters for several
of our selected LBGs are shown in Figure 9. In Figure 10 we
show the spatial distribution of the LBGs relative to the QSO
(red dot at zero) for our six fields. We also show the individual
color–color diagrams and indicate the number of LBGs found
in each individual field in Figure 11. Note that the number of
LBGs in the fields cannot be directly compared because each
image has different limiting magnitude and different effective
area (different reduced image size, masked region, etc.). In
Figure 12 we show a false-color image of the field around QSO
SDSSJ2301+0112 with the LBG candidate positions
indicated.

3.4. Redshift Selection Function

We used the LBG color modeling machinery described in
Section 3.1 to compute the redshift selection function f ( )zz of
our LBG color-selection criteria. At each redshift step, we
redshift the 1000 rest-frame simulated LBG spectra into the
observed frame, draw luminosities from the luminosity
function, compute magnitudes and colors, and add photometric
errors. We then compute the completeness at each redshift by
calculating the fraction of simulated LBGs that satisfy the
selection criteria defined in Section 3.3, namely: fulfill the color
criteria in Equation (2), and fulfill the magnitude constraints
(given by the s4 limiting magnitudes for NB596 and rGUNN and
by the bright-end cut imposed for our selection, >r 24.0GUNN ).
Note that, as the limiting magnitudes of our fields are slightly
different, we compute f ( )zz for each individual field, using
their corresponding NB596 and rGUNN limiting magnitudes. The
final f ( )zz varied from field to field by a small amount, then we
computed the median of f ( )zz over the six fields, which is
shown in Figure 13.

From Figure 13 we see that our selection criteria recover a
peak value of 26% of LBGs at ~z 3.78 over a small
D ~z 0.04 interval. Our criteria also select 10% of LBGs
over a wider redshift interval, ranging from ~z 3.65 to
~z 3.95 (D ~z 0.3), which corresponds to ~ -18, 800 km s 1

(~ -h167 1 cMpc) at z= 3.78. The NB technique selects LBGs
over a much narrower redshift range compared to broad-band
LBG selection, which typically selects galaxies over a range
D ~z 1.0 (e.g., Ouchi et al. 2004a; Bouwens et al.
2007, 2010), or ∼3.3 times larger than our selection. However,
as low-redshift galaxies have similar colors as the LBGs in our
filters, we have to adopt relatively conservative color cuts,
making our completeness relatively low.

4. Clustering Analysis

In this section we analyze the clustering of LBGs around our
QSOs at z= 3.78. First, we present the measurement of the
QSO–LBG cross-correlation function in Section 4.1. We then
estimate the correlation function parameters ( gr ,0 ) assuming a
power-law form x = g-( ) ( )r r r0 . Our results are compared
with theoretical expectations based on the auto-correlation of
both LBGs and QSOs at z∼ 4 assuming deterministic bias. In
Section 4.2 we present the LBG auto-correlation computed
from our QSO fields, and finally in Section 4.3 we compare our
results with previous measurements.

4.1. The QSO–LBG Cross-correlation Measurement

Following convention, we study clustering using the two-
point correlation function x ( )r , which measures the excess
probability over a random distribution of finding an object at
separation r from another randomly selected object, in a
volume element dV (Peebles 1980). For the case of galaxies
around QSOs this correlation function is defined by

x= +[ ( )] ( )dP n r dV1 , 3G QG

where x ( )rQG is the QSO–galaxy cross-correlation function and
nG is the mean number density of galaxies in the universe. Here
r is real space comoving distance, which is however not the
observable even when redshift information is available, as
peculiar velocities induce redshift space distortions along the
line of sight (Sargent & Turner 1977). Typically LBG
clustering studies that lack redshifts measure the angular
correlation function (e.g., Giavalisco et al. 1998; Ouchi et al.
2004b; Lee et al. 2006). Although we do not have redshifts of
our LBGs, our NB selection technique selects LBGs over a
narrow redshift interval D z 0.3 (see Figure 13), which
allows us to measure clustering as a function of transverse
comoving distance instead of angular distance (at z= 3.78, the
angular diameter distance changes by just 3% over this
redshift interval). Thus we write the real space separation r as

= +r R Z2 2 2, where R is the transverse comoving distance
between the QSO and the galaxy, and Z is the radial comoving
distance between them, approximately given by

= D
( )

( )Z
c

H z
z, 4

where H(z) the Hubble constant evaluated at redshift z= 3.78,
which we take to be a constant over the redshift interval
considered (an approximation valid to 5%).
We measure the volume-averaged projected cross-correlation

function between QSOs and LBGs c( )R R,min max , which is a
dimensionless quantity defined as the real space QSO–LBG
cross-correlation function x ( )R Z,QG integrated over a volume

Figure 8. Color–color diagram for the six stacked QSO fields. Here the
evolutionary track shown in Figure 5 is plotted as redshift color-coded track
according to the color bar. We have highlighted the selected LBGs as red
points. The magenta points indicate the color of each QSO in the filters. Arrows
indicate lower limits for -NB NB571 596 color. These are cases in which the
object was not detected in NB571 filter at the 2σ level and magnitude was
replaced by the corresponding limit magnitude.
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and then normalized by it (e.g., Hennawi et al. 2006, 2015)

òc
x

=( )
( )

( )R R
R Z dV

V
,

,
, 5min max

QG eff

eff

where Veff is a cylindrical volume defined by the radial bin
[ ]R R,min max , the height Z probed by our filter configuration, and
modulated by the selection function of our survey. We measure
c( )R R,min max at scales q< < 5.0 350. 0 (corresponding to

< < -R h0.124 8.706 1 cMpc) in logarithmically spaced radial
bins centered on the QSO for all fields using the estimator

c =
á ñ
á ñ

-( ) ( )R R,
QG

QR
1, 6min max

where á ñQG and á ñQR are the number of QSO–LBG and QSO–
random pairs in this cylindrical volume. The quantity á ñQG is
directly measured by counting the QSO–LBG pairs found in
our images.
The quantity á ñQR is the expected random number of QSO–

LBG pairs, which is given by

á ñ = < <( ) ( )n z r r r VQR , , 7G GUNN
lower

GUNN GUNN
limit

eff

where Veff is the effective volume of the radial bin in question
and < <( )n z r r r,G GUNN

lower
GUNN GUNN

limit is the mean number
density of LBGs at redshift z in the magnitude range of our
survey, which will be henceforth referred to as nG to simplify
notation. Given that galaxy clustering measurements are
normally performed in random locations of the universe, the

Table 3
LBG Sample

ID R.A. Decl. rGUNN NB571 NB596

(J2000) (J2000)

SDSSJ0124+0044_1 20.98541 0.73838 24.58 >26.80 25.19
SDSSJ0124+0044_2 21.06438 0.73190 25.50 >26.80 24.94
SDSSJ0124+0044_3 21.00865 0.73119 25.24 26.35 24.98
SDSSJ0124+0044_4 21.06237 0.73103 25.10 26.70 24.79
SDSSJ0124+0044_5 21.01586 0.75937 25.23 26.58 25.08
SDSSJ0124+0044_6 21.01454 0.74763 24.69 26.70 25.30
SDSSJ0213−0904_1 33.31527 −9.13219 25.09 >26.94 25.10
SDSSJ0213−0904_2 33.33407 −9.13154 24.49 26.32 24.73
SDSSJ0213−0904_3 33.29456 −9.13105 24.50 26.43 24.98
SDSSJ0213−0904_4 33.34291 −9.12850 25.16 >26.94 25.53
SDSSJ0213−0904_5 33.37631 −9.12752 24.60 25.41 24.20
SDSSJ0213−0904_6 33.29678 −9.12806 25.54 >26.94 25.63
SDSSJ0213−0904_7 33.28357 −9.12428 25.22 >26.94 25.61
SDSSJ0213−0904_8 33.33103 −9.07411 25.12 26.79 25.52
SDSSJ0213−0904_9 33.29552 −9.10705 25.39 26.61 25.35
SDSSJ0213−0904_10 33.31107 −9.05450 25.35 26.51 25.19
SDSSJ0213−0904_11 33.38310 −9.05430 24.88 26.62 25.28
J2003−3300 _1 300.85398 −32.85834 25.06 26.29 24.99
SDSSJ2207+0043_1 331.82678 0.66829 25.93 26.75 25.47
SDSSJ2207+0043_2 331.90688 0.66930 25.16 >26.78 25.33
SDSSJ2207+0043_3 331.90330 0.73064 25.04 >26.78 24.79
SDSSJ2207+0043_4 331.91995 0.71966 24.71 26.69 25.14
SDSSJ2207+0043_5 331.89738 0.69250 24.03 24.70 23.50
SDSSJ2207+0043_6 331.92999 0.68477 25.01 26.49 24.91
SDSSJ2301+0112_1 345.32769 1.16875 25.23 26.49 25.23
SDSSJ2301+0112_2 345.28149 1.21762 25.05 >26.78 25.25
SDSSJ2301+0112_3 345.34116 1.21677 25.26 26.45 25.21
SDSSJ2301+0112_4 345.28836 1.20452 25.48 >26.78 25.28
SDSSJ2301+0112_5 345.28318 1.19689 24.70 >26.78 25.22
SDSSJ2301+0112_6 345.30258 1.17353 24.49 25.74 24.25
SDSSJ2301+0112_7 345.33532 1.23626 24.91 26.26 25.01
SDSSJ2301+0112_8 345.27685 1.23673 24.16 25.51 24.16
SDSSJ2311−0844_1 347.89595 −8.70962 25.69 26.63 25.38
SDSSJ2311−0844_2 347.92391 −8.72311 24.45 >26.79 25.22
SDSSJ2311−0844_3 347.91688 −8.72487 25.65 >26.79 25.36
SDSSJ2311−0844_4 347.90256 −8.73469 25.05 >26.79 25.28
SDSSJ2311−0844_5 347.93345 −8.73878 24.72 26.24 24.59
SDSSJ2311−0844_6 347.92236 −8.74192 25.52 >26.79 25.22
SDSSJ2311−0844_7 347.94311 −8.74245 25.27 >26.79 25.56
SDSSJ2311−0844_8 347.94631 −8.75457 24.71 26.50 25.20
SDSSJ2311−0844_9 347.93114 −8.76500 25.59 >26.79 25.19
SDSSJ2311−0844_10 347.91475 −8.72482 24.32 26.65 24.58
SDSSJ2311−0844_11 347.89925 −8.72574 24.30 25.86 24.60
SDSSJ2311−0844_12 347.91793 −8.73420 25.37 26.60 25.21

Note. The magnitudes correspond to AB magnitudes measured in a 2″diameter aperture for each band.
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mean number density measured from the survey is typically a
good proxy for the mean number density of the universe,
provided the survey volume is large enough. In such cases, the
galaxy number counts for the random sample can be computed
from the data themselves, and one typically constructs random
catalogs with a number density determined from the survey to
estimate á ñQR . However, in our case we are pointed toward a
QSO situated in what is likely to be an overdensity. Therefore
the mean number density of galaxies in our survey is not
representative of the mean in random locations and we cannot
follow the standard procedure for computing á ñQR .
If we had observations of control fields (i.e., not centered on

QSOs) with our same filter configuration, then it would be
possible to measure the background number density of LBGs
directly and determine á ñQR . An alternative would be to
measure this quantity directly from the outer parts of images,
where the clustering becomes negligible, given a sufficiently
large FOV instrument. Unfortunately, we do not have images
of control fields, and the FOV of FORS1 is too small to provide
a reliable measurement of the background. Thus our only
alternative is to estimate á ñQR from Equation (7), where nG is
calculated from the z∼ 4 LBG luminosity function, and the
effective volume Veff is determined from our Monte Carlo
simulations of our selection function (see Section 3.4) and the
effective area covered by our survey. We provide further details
of these computations in what follows.
To calculate nG we used the Schechter parameters from

Ouchi et al. (2004a) z∼ 4 LBG luminosity function. We
integrated this luminosity function over the magnitude limits
given by our LBG selection, and this magnitude integral was
weighted by the photometric completeness fraction of our
source detection following the same procedure described in
Section 3.1. Given that our fields all have slightly different
limiting magnitudes and different source completeness, we
computed the expected nG for each field. We assumed that nG
is constant over the redshift ranged considered, which is a good

Figure 9. Images of some selected LBGs. From left to right we show the
NB571, NB596, and rGUNN images. Each panel is 7. 5 on a side. The red circles
show the position of the detected object, and its size corresponds to the region
in which the photometry was done ( 2 in diameter). The magnitudes are
indicated in each panel.

Figure 10. Distribution of LBGs around the QSO in the plane of the sky for the
six stacked fields. The central QSO is located at 0.0 and is plotted by a red star.
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approximation given the narrow redshift range D z 0.3 that
we probe. The expected mean number density of LBGs in
blank fields, nG, computed for the magnitude range of each
field, is given in Table 4.

Figure 11. Same as in Figure 8 but for the six individual QSO fields. At the top right of each plot the number of LBGs found is shown.

Figure 12. False-color image of 42 arcmin2 of the field SDSSJ2301+0112.
Red circles indicate the LBG candidates’ positions.

Figure 13. Redshift selection function of the LBG selection. The completeness
per redshift bin was determined from 1000 simulated LBG spectra with
different aEWLy , UV continuum slope, and rGUNN magnitudes. This is
calculated by computing the fraction of the LBG simulated colors, per redshift
bin, which was obtained from the selection region. This defines the redshift
selection function, which is used for the clustering measurements in Section 4.
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We define the effective volume of a radial bin as

ò ò f p= ( ) ( )V R Z RdRdZ, 2 , 8
Z

Z

R

R

eff
min

max

min

max

where f ( )R Z, encodes the geometry of the survey, which can
be separated into the radial R and the redshift (line-of-sight) Z
selection function as f f f=( ) ( ) ( )R Z Z R, Z R . The redshift
selection function of our survey f ( )zz was modeled in
Section 3.4 and we convert it to a redshift selection function
in comoving units f ( )ZZ using Equation (4). Then, we
integrate it over the redshift range covered by our Monte
Carlo modeling (corresponding to  z3.2 4.4).

The radial selection function f ( )RR is easily calculated using
the detection masks for our images. We created catalogs with
randomly distributed galaxies with number density nran such
that we had ∼100,000 sources in the entire image. Then we
computed f ( )RR in radial bins as the ratio between the number
of randomly distributed galaxies and the expected number
without masking p -( )n R Rran max

2
min
2 . The resulting f ( )RR

then quantified the fraction of the bin area where we could have
detected LBGs. We computed the value of Veff for each radial
bin in each field using Equation (8). Summing the Veff over the
radial bins, we obtained the total volume covered by each of
our six fields Vfield, given in Table 4. We obtained that the total
volume of our survey is 14,782 -h 3 cMpc3.

To obtain a rough estimate of the LBG overdensity in our
QSO fields, we calculated the expected number of random
QSO–LBG pairs, á ñQR field, for each of our fields and compared
to the number we found, á ñQG field. These results are given in
Table 4, where we also show the overdensity per field,
á ñ á ñQG QRfield field. We see that five of our six fields exhibit an
LBG overdensity of LBGs, while one appears to be under-
dense. Adding up the results for all six fields, we find that
the random expectation is á ñ =QR 28.6 LBGs, whereas we
detected a total of á ñ =QG 44 LBGs, giving an overall
overdensity of 1.5, and indicating that our fields are on average
overdense.

To explore the profile of this overdensity around QSOs, we
computed á ñQG and á ñQR in bins of transverse distance for
each of our six fields, and then summed them to determine
the binned volume averaged cross-correlation function
c( )R R,min max according to Equation (6). These results are
given in Table 5 and plotted in Figure 14. We estimate errors
on c( )R R,min max assuming that shot-noise dominates the
error budget (see Section 4.1.1 for a discussion about this

assumption), and use the one-sided Poisson confidence
intervals for small number statistics from Gehrels (1986).
Given that the auto-correlation functions of both LBGs and

QSOs at z∼ 4 have been previously measured, we can compute
the expected volume-averaged QSO–LBG cross-correlation
function c( )R R,min max assuming deterministic bias and
compare it to our measurements. If we assume that both LBGs
and QSOs trace the same underlying dark matter distribution,
and assume deterministic bias (i.e., not stochastic), then we
can write x x x=QG QQ GG . Assuming a power-law form
x = g( )r r0 for the respective auto-correlations of QSOs and
LBGs, and that they have identical slopes γ, then the cross-
correlation length can be written as =r r r0

QG
0
QQ

0
GG . To

compute xQG we use respective measurements of the auto-
correlation lengths of LBGs and QSOs at z∼ 4 from the
literature. For LBGs Ouchi et al. (2004b) measured

= -r h4.10
GG 1 cMpc and g = 1.8, whereas for QSOs we adopt

= -r h22.30
QQ 1 cMpc, which was measured by Shen et al.
(2007) for >z 3.5 QSOs assuming a fixed g = 1.8. Combining
these implies = -r h9.60

QG 1 cMpc for g = 1.8. Plugging this
power-law LBG–QSO cross-correlation function into
Equation (5) and integrating over the effective survey volume
gives us the expected value of c( )R R,min max , which is shown
as a dashed line in Figure 14. One sees that our QSO–LBG
cross-correlation measurement is in reasonable agreement with
the expected value of c( )R R,min max combining auto-correlation
measurements and assuming deterministic bias. In
Section 4.1.1 we quantify this agreement by fitting our cross-
correlation function.

4.1.1. Fitting the Cross-correlation Function

Given the projected cross-correlation function measurement,
we now determine the real-space cross-correlation parameters
r0
QG and γ that best fit our data. To this end we use a maximum
likelihood estimator (MLE), and fit for the parameters, which
maximize the probability of the data we observe. Since we are
dealing with a counting process with a small number of counts
in each bin (see Table 5), we can assume that Poisson error
dominates the error budget. Adopting the Poisson distribution
for the counts in our cross-correlation function bins, we can
write the likelihood of our data as

 
l

=
l

=

-

!
( )

e

x
, 9

i

N
i
x

i1

i ibins

Table 4
LBG Overdensity in Each Individual Field

Field nG Vfield á ñQR field á ñQG field Overdensity
(1) (2) (3) (4) (5) (6)

SDSSJ0124+0044 2.15 2600.20 5.60 6 1.07
SDSSJ0213–0904 1.79 2860.50 5.12 11 2.15
J2003–3300 1.71 2303.21 3.94 1 0.25
SDSSJ2207+0043 1.93 2032.63 3.92 6 1.53
SDSSJ2311–0844 2.13 2504.83 5.34 8 1.50
SDSSJ2301+0112 1.88 2480.15 4.66 12 2.58

Note.(1) Field ID; (2) The mean number density of z ∼ 4 LBGs in units of - -( )h10 cMpc3 3 3 , in the magnitude range of the survey < <r r rGUNN
lower

GUNN GUNN
limit . Given

that rGUNN
limit and completeness in the source detection are different for each field, we obtain a number density slightly different for each one; (3) total volume of the field

in units of -( )h cMpc3 3 , computed as = å =V Vi
N

field 1 eff,ibins ; (4) total number of expected LBGs on the whole field computed as á ñ = n VQR field G field; (5) total number of
observed QSO–LBG pairs on the whole field; (6) total overdensity per field, computed as á ñ á ñQG QRfield field.
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where the product is over the Nbins radial cross-correlation
function bins, xi is the number counts measured in the ith bin
and li is the expected number counts in the ith bin for a given
set of model parameters. In our case we have defined = á ñx QG
and l = á ñQG exp , where

ò ò f x p

á ñ

= +( )[ ( )]

( )

n R Z R Z RdRdZ

QG

, 1 , 2

10
Z

Z

R

R

exp

G QG
min

max

min

max

Here x =
g

+
-( )( )R Z, R Z

rQG

2 2

0
QG and is determined by the

model parameters r0
QG and γ. Taking the natural logarithm of

both sides of Equation (9), we obtain

 åµ á ñ á ñ - á ñ
=

[ ( ) ] ( )ln QG ln QG QG , 11
i

N

i i i
1

exp exp
bins

where model-independent terms have been dropped. We
calculated the log-likelihood for a grid of ( gr ,0

QG ) values,
which defines a uniform prior, ranging from  g1.0 5.0 and

 r1.0 15.00
QG and maximized the likelihood to obtain

= -r h6.93 cMpc0
QG 1 and g = 2.4. These values were used in
Equation (5) to calculate the corresponding c( )R R,min max value
shown as the red line in Figure 14. We also computed the 1σ
and 2σ 2D confidence regions for these parameters, shown in
the g-r0

QG plane in Figure 15. We determined errors on the
parameters by marginalization. Given that our grid of values is
uniform, the normalized likelihood is the joint posterior
distribution of the parameters g( )P r ,0

QG . Therefore, we
marginalized out rQG0 and γ to obtain the probability
distributions g( )P and ( )P r0

QG , respectively. From those
probability distributions we computed 68% confidence regions
about our MLE to define the error on the parameters. We find

= -
+ -r h6.93 cMpc0

QG
1.89
2.13 1 and g = -

+2.4 0.5
0.3.

As shown in Figure 15, our measurements are relatively noisy
when we fit rQG0 and γ simultaneously, and there is a clear
degeneracy between these parameters. For that reason, following
common practice, we also fit the correlation function with γ
fixed. Independent measurements of QSO auto-correlation
suggest a slope of g = 2.0 (Shen et al. 2007), which lies within
the s1 confidence region of our measurement (see Figure 15).
Thus if we choose to fix the slope to this value, the maximum
likelihood and the s1 confidence interval for the cross-
correlation length is = -

+ -r h8.830
QG

1.51
1.39 1 cMpc.

Note that in the analysis described above we have assumed
that the error bars on our cross-correlation function are

Table 5
QSO–LBG Cross-correlation Function

Rmin Rmax á ñQG á ñQR c( )R R,min max Veff,total
-(h 1 cMpc) -(h 1 cMpc) -(h 3 cMpc )3

0.124 0.252 1 0.039 24.362-
+

20.974
58.332 20.84

0.252 0.513 2 0.168 10.883-
+

7.676
15.674 88.48

0.513 1.041 2 0.771 -
+1.594 1.676

3.422 400.18

1.041 2.112 10 3.110 -
+2.216 1.000

1.373 1609.04

2.112 4.288 16 12.868 -
+0.243 0.308

0.395 6644.21

4.288 8.706 13 11.637 -
+0.117 0.306

0.404 6018.75

Note.We present the data for the volume-averaged projected cross-correlation function between QSOs and LBGs c( )R R,min max shown in Figure 14. This is measured
in radial bins defined by Rmin and Rmax. á ñQG is the observed number of QSO–LBG pairs per bin, and á ñQR is the expected number of QSO–random pairs per bin,
computed from Equation (7). We also show the total volume of the bin added over the fields, computed as = å =V Vi

N
eff,total 0 eff,ifields .

Figure 14. QSO–LBG cross-correlation function and its maximum likelihood
model. The filled circles show our measurement described in Section 4.1
with s1 Poisson error bars. The solid red curve shows the best maximum
likelihood estimator for both rQG0 and γ as free parameters. We obtain =r0

QG

-h6.93 cMpc1 and g = 2.4. The dashed black line shows the theoretical
expectation of c( )R R,min max for the six stacked fields calculated from the
independently determined QSO and LBG auto-correlation functions, assuming
a deterministic bias model.

Figure 15. s1 and s2 confidence regions of rQG0 and γ parameters (in blue and
red, respectively), determined using a maximum likelihood estimator. The best
estimation is shown as a white cross.
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dominated by Poisson counting errors. This ignores cosmic
variance fluctuations, and also assumes that the positions of the
LBGs around the QSO are uncorrelated. However, as galaxies
are not randomly distributed in the universe, but rather have
significant auto-correlations, our binned measurements of á ñQG
are not truly independent. Given these correlations, our results
could be somewhat sensitive to our choice of binning, and our
error bars could also be somewhat underestimated. We have
verified that changing the binning does not significantly change
our parameter constraints. In principle, we should include the
correlations and cosmic variance in our likelihood, analogous
to computing the non-diagonal elements of the covariance
matrix for a multivariate Gaussian likelihood. However, there is
no simple analytical expression for the likelihood of a
correlated Poisson process and, furthermore, correctly model-
ing the cosmic variance would require the use of N-body
simulations of massive QSO halos at z∼ 4. Note, however, that
while the positions of LBGs in the same field will be correlated,
our QSO fields are separated by Gpc distances, and hence the
positions of LBGs in different fields are completely indepen-
dent. Given that our correlation function comes from six
distinct fields, and the relatively large Poisson error bars, we
believe that ignoring correlations and cosmic variance is a
reasonable approximation.

Our measurement indicates a strong cross-correlation
between QSOs and LBGs at z∼ 4, implying that QSOs trace
massive dark matter halos in the early universe, with detectable
enhancements of LBGs. We expect that those halos evolve to
the most massive cluster of galaxies at z=0. Our results are in
agreement with the expected cross-correlation function
( = -r h9.60

QG 1 cMpc for g = 1.8) computed from the indivi-
dual QSO and LBG auto-correlation functions assuming
deterministic bias, as shown by the dashed line in Figure 14.

4.2. Auto-correlation of LBGs in QSO Fields

Another measure of the clustering of LBGs in QSO
environments is the LBG auto-correlation function in our fields.
If QSOs trace highly biased locations of the universe, then we
expect the LBGs around them to be more highly clustered than
LBGs in blank fields, resulting in an enhancement of the LBG
auto-correlation function. The auto-correlation function of z∼ 4
LBGs in blank fields was measured by Ouchi et al. (2004b),
which we compare to our results.

To measure the LBG auto-correlation function we adopt the
estimator:

c =
á ñ
á ñ

-( ) ( )R R,
GG

RR
1 12min max

where á ñGG is the number of observed LBG–LBG pairs, and
á ñRR is expected random number of LBG–LBG pairs, in a
cylindrical volume defined by the radial bin [ ]R R,min max and
the height Z. We measure c( )R R,min max at scales <1.0
q < 490. 0 (corresponding to < < -R h0.025 12.188 1 cMpc)
in logarithmically spaced radial bins. We measured á ñGG
directly from the images by counting the LBG pairs in each
radial bin. Following the same argument in Section 4.1, we use
the LBG luminosity function to compute the background
number density nG, rather than estimating it from our survey
images.

We computed the expected random number of LBG pairs as
(see, e.g., Padmanabhan et al. 2007)

á ñ = ( )N n VRR , 13G G eff

where nG is the same quantity defined in Section 4.1 and Veff is
given by Equation (8), but in this case using a different radial
selection function f ( )RR , because of the different binning used.
Here NG is the expected number of LBGs for the entire volume
in question in a random region of the universe, which is
computed for each of our six fields as =N n VG G field. The radial
selection function f ( )RR in this case is computed in an
analogous way as for the cross-correlation: we create catalogs
with ~Nran 100,000 randomly distributed galaxies on our
masked images, and then we compute f ( )RR as the ratio
between the observed number of random galaxy pairs over
the expected number of random galaxy pairs per radial
bin. Here, the expected number of galaxy pairs per bin is
computed by p -( )N n R Rran ran max

2
min
2 . Note that, according to

Equation (13), á ñRR is proportional to the square of the LBG
number density nG and to the square of the redshift selection
function f ( )ZZ such that:

ò fá ñ µ
⎛
⎝⎜

⎞
⎠⎟( ) ( )n Z dZRR . 14G

Z

Z

Z
2

2

min

max

We computed á ñGG and á ñRR for each individual field and
then we stacked the counts (i.e., we added the pairs in each
field for a given bin) to measure the binned c( )R R,min max value
as in Equation (12). We show the results in Figure 16 and the
numerical values are given in Table 6. We estimate errors on
c( )R R,min max using the one-sided Poisson confidence intervals
for small-number statistics in the same way as in Section 4.1.
Analogous to our approach for the cross-correlation, we used

an MLE to fit our auto-correlation function. In this case the

Figure 16. Data points showing the LBGs auto-correlation measurement in
QSO fields as we describe in Section 4.2. The solid red curve shows the best fit
for our measurements given by = -r h21.59 cMpc0

GG 1 and g = 1.5. The
dotted black curve shows the LBGs auto-correlation in blank fields at z ∼ 4
measured by Ouchi et al. (2004b). We find a stronger clustering in our fields in
comparison with blank fields, which suggests that QSOs are located in
overdense regions.
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expected number of LBG–LBG pairs á ñGG exp is modeled as

ò ò f x p

á ñ =

´ +( )[ ( )] ( )

n V

R Z R Z RdRdZ

GG

, 1 , 2 , 15

G

Z

Z

R

R

exp 2
field

GG
min

max

min

max

where xGG is the LBG auto-correlation function assumed to
have a power-law form with correlation length rGG0 .

For the fitting we used a uniform prior defined by
 g1.0 2.5 and  r5.0 60.00

GG . We show the 1σ and
2σ 2D confidence regions for the parameters in Figure 17. We
obtained that the maximum likelihood and the 1σ confidence
intervals are = -

+ -r h21.59 cMpc0
GG

2.96
3.73 1 and g = -

+1.5 0.2
0.1,

which are plotted as the red line in Figure 16. Following the
same arguments as in Section 4.1, we also fit the auto-
correlation function with γ fixed. The LBG auto-correlation
function measured in blank fields at z∼ 4 suggests a slope of
g = 1.8 (Ouchi et al. 2004b), which lies outside the s1
confidence region of our measurement (see Figure 17). We then
prefer to fix γ to its maximum likelihood value g = 1.5, which
agrees with the LBG auto-correlation function slope measured
in QSO fields at z= 2.7 (Trainor & Steidel 2012). After fixing
γ, we obtain = -

+ -r h21.59 cMpc0
GG

1.69
1.72 1 . We note that the first

data point in the auto-correlation measurement is negative,
indicating a smaller number of LBG–LBG pairs than expected.
We also performed the fitting not including this data point and
found that this does not change our results within our 1σ errors.

In order to compare this clustering signal with that computed in
blank fields, we use the LBG auto-correlation at z∼ 4 measured
by Ouchi et al. (2004b), which we assume represents the cosmic
average. Plugging their best-fit values ( = -r h4.1 cMpc0

GG 1

and g = 1.8) into Equation (5) using a power-law form
for x ( )R Z,GG , gives the dotted line plotted in Figure 16. To
better compare our auto-correlation measurement with the
Ouchi et al. (2004b) blank field values, we performed a fit with
fixed g = 1.8, obtaining a maximum likelihood value and 1σ
confidence interval given by = -

+ -r h16.86 cMpc0
GG

1.14
1.17 1 , which

is ∼4 times higher than the correlation length in blank fields. The
fact that our LBG auto-correlation measurement is higher
suggests that the LBGs in our fields are more clustered than
those in blank fields, which provides another indication that
QSOs fields trace regions of the universe that are denser than the
cosmic average, confirming our findings from the cross-
correlation measurement in Section 4.1.

While it may at first seem counter-intuitive that the LBG
auto-correlation is enhanced by such a large factor (∼4) in
QSO environs, this is actually exactly the expected behavior as

we clarify here. The LBG auto-correlation function measures
the radially binned profile of galaxy pairs, and it is not trivial to
relate the auto-correlation to the cross-correlation. In order to
build intuition, we will think in terms of the total number of
galaxies detected in our survey (see Table 4). On average, we
found 1.5 times more galaxies in QSO fields compared with the
number expected in blank fields (which is estimated from our
selection function and the number density of LBGs nG), and
that means that we should detect at least 1.52 more galaxy
pairs in our fields compared with the expectation in blank
fields, simply because we are overdense by that factor. This
implies that the auto-correlation function will never be less
than - =1.5 1 1.252 .
To better illustrate what happens to the auto-correlation in an

overdensity, we will consider a hypothetical scenario where
galaxies are randomly distributed in the universe with number
density nG, and are clustered only around QSOs, which are
however rare objects in the universe. Now imagine that the
number density of galaxies around QSOs is enhanced within a
sphere of radius RQSO, but that galaxies are otherwise randomly
distributed within the sphere. In other words, we imagine that
in QSO fields the number density of galaxies is simply
increased by a factor X, but that within the sphere they are
unclustered. If QSOs are rare structures, then when averaging
over large volumes of the universe, we expect that the observed
number of galaxy pairs á ñGG will be very close to the random

Table 6
LBG Auto-correlation Function

Rmin Rmax á ñGG á ñRR c( )R R,min max V a
eff,total

-(h 1 cMpc) -(h 1 cMpc) -(h 3 cMpc )3

0.025 0.070 0 0.011 −1.000-
+

0.000
173.441 1.13689

0.070 0.196 2 0.082 -
+23.336 15.721

32.099 8.78984

0.196 0.551 1 0.611 -
+0.636 1.353

3.763 65.3105

0.551 1.546 22 4.251 -
+4.175 1.094

1.355 454.160

1.546 4.341 82 23.688 -
+2.462 0.382

0.382 2528.37

4.341 12.188 72 40.779 -
+0.766 0.208

0.208 4335.68

Note.We present the data for the LBG auto-correlation function in QSOs fields c( )R R,min max shown in Figure 16. This is measured in radial bins defined by Rmin and
Rmax. á ñGG is the observed number of LBG–LBG pairs per bin, and á ñRR is the expected number of random–random pairs per bin, computed from Equation (13). We
also show the total volume of the bin added over the fields, computed as = å =V Vi

N
eff,total 0 eff,ifields .

Figure 17. Same as Figure 15 but for the rGG0 and γ parameters corresponding
to the LBG auto-correlation function.
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expectation á ñRR (computed using nG), and then the galaxy
auto-correlation function measured from blank fields will be
flat and very close to zero on small scales, <r RQSO. On larger
scales, ~r RQSO, it would deviate more from zero, reflecting
the clustering due to the top-hat overdensities around QSOs
(however, if QSOs are very rare objects this positive correlation
function would be diluted and could still be quite small). Note,
however, that if we measure the galaxy auto-correlation around
QSOs at radii <r RQSO, then á ñGG will be X2 times larger than
á ñRR (which is again computed using nG), and then we would
measure an auto-correlation function of roughly -X 12 . This
could be much larger than the value measured in blank fields
that would be close to zero. This simple example illustrates that
because á ñRR is computed from the number density of galaxies
in random locations nG, overdense fields will always result in
an enhanced auto-correlation relative to that in blank fields, and
that these enhancements can be quite large. The situation
clearly becomes more complicated if galaxies are intrinsically
clustered with a power-law profile, and there is no simple
analytical relationship between the cross- and auto-correlation
functions. To fully quantitatively understand the relationship
between the cross- and auto-correlation functions in QSO
environments, one would need to analyze cosmological
simulations (see, e.g., White et al. 2012). But the generic
expectation is an enhancement of the auto-correlation function
in QSO environs compared with blank field pointings, which is
exactly what we see in Figure 16.

4.3. Comparison with Previous Measurements

The highest redshift for which the QSO–LBG cross-
correlation has been measured before is at z∼ 3 by Trainor
& Steidel (2012), who reported an overdensity of galaxies in
QSO fields, and found a cross-correlation length of

= ~
-r h7.3 1.3 cMpcz0, 3

QG 1 for a fixed g = 1.5. At z∼ 4 we
find a steeper slope (we fixed g = 2.0) than Trainor & Steidel
(2012), but in order to facilitate a comparison with their results,
we fit our cross-correlation measurement for their same fixed
g = 1.5. This γ value, is near the border of our 2σ confidence
region (see Figure 15) and thus disfavored by our measure-
ments, but we nevertheless proceed with this for comparison
purposes. We obtain a cross-correlation length of

= -
+ -r h10.730

QG
2.41
2.20 1 cMpc, which is ∼1.5 times higher than

their cross-correlation length at z∼ 3, suggesting that halos
hosting QSOs could be more biased and highly clustered at
z∼ 4. This agrees with the result reported by Shen et al. (2007)
who find that the QSO auto-correlation increases significantly
from z=3 to z=4, and as such we expect to have found a
larger cross-correlation. However, note that our measurements
are too noisy to make strong statements about evolution, and
larger LBG samples are still needed to perform more detailed
comparisons.

At >z 4 only individual QSO fields have been studied so
far. Some studies of QSO environments at ~ –z 6 7 find no
enhancements of galaxies compared with the background (e.g.,
Willott et al. 2005; Bañados et al. 2013; Simpson et al. 2014;
Mazzucchelli et al. 2017), which could be suggesting that the
strong QSO–galaxy cross-correlation breaks down at those
redshifts. The lack of QSO auto-correlation measurements at
these high redshifts makes it impossible to know masses of
dark matter halos hosting ~z 6 QSOs, but if their masses are
comparable to those hosting QSOs at z∼ 4 (i.e., Mhalo

M1012 as suggested by the Shen et al. 2007 auto-correlation),

then one would generically expect a strong QSO–galaxy
clustering signal as we have detected here at z∼ 4.

5. Testing the Robustness of Our Results

Two requirements must be fulfilled to ensure a robust
clustering measurement: we need a low contamination level in
the LBG sample and an accurate knowledge of the background
number density of LBGs. Given that we used a novel NB
technique to select LBGs, we need to carefully consider those
requirements. In this section, we first discuss caveats related to
the the use of this selection technique. Then we consider the
effects of using a contaminated sample for clustering measure-
ments, and finally we explore the impact of using different
LBG selection criteria on our results.

5.1. The Use of an NB Technique for LBG Selection: Caveats

A first complication of using our novel method for color-
selecting LBGs is that the level of contamination of our sample
is unknown. In principle, the purity of the sample can only be
determined with follow-up spectroscopy, or detailed modeling
of the population of contaminant galaxies. Both alternatives
would be challenging to implement and are beyond the scope
of this paper, but as a compromise we qualitatively discuss the
impact of contamination on the correlation function (see
Section 5.2) and we demonstrate the robustness of our results
against contamination by exploring their sensitivity to the
color-selection criteria (see Section 5.3). Note, however, that
we could excise contamination in our LBG sample if we had
additional imaging on our fields using traditional broad-band
filters. This would allow us to confirm the presence of the Lyα
break in our LBG candidates.
Another complication of using our novel color-selection is

that we did not have an independent measurement of the
background number density of LBGs required to compute the
clustering. This implied that we had to rely on Monte Carlo
simulations to determine the LBG selection function f ( )ZZ ,
and then our clustering results are sensitive to errors in this
modeling. If the completeness of the sample were close to
100%, then 10% errors on f ( )ZZ would impact our measure-
ment at the 10% level, whereas if the completeness were ∼20%
(as is the case), then there could be 100% error on f ( )ZZ ,
which could strongly impact the amplitude of the measured
clustering. Note that the auto-correlation is even more sensitive
to this quantity compared to the cross-correlation, because
while á ñQR is proportional to f ( )ZZ , á ñRR is proportional to the
square of this quantity. In Section 5.3 we test our redshift
selection function to demonstrate that it is accurate and
correctly modeled.

5.2. Impact of Contamination on the Clustering Measurements

One method to qualitatively check the contamination level in
the sample is by studying the shape of the measured correlation
function. For example, if we measure the cross-correlation
function via Equation (6) using a highly contaminated sample,
the numerator in that equation would be overestimated because
of the inclusion of low-redshift contaminants that are taken to
be real LBGs. However, since the denominator á ñQR is simply
computed from the LBG luminosity function and our redshift
selection function, this value does not include the extra number
counts due to contamination. This implies that the measured
cross-correlation will not behave like a power law, but rather it
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will flatten toward larger scales. Quantitatively, for a
contaminated sample, what we would actually measure is

c =
á ñ +

á ñ
-( ) ( )R R

N
,

QG

QR
1 16min max

cont

where á ñQG and á ñQR are given by Equations (10) and (7),
respectively, and Ncont is the number of contaminants in the bin.
Given that the contaminants are galaxies at different redshifts,
the cross-correlation between them and the z∼ 4 QSO is zero,
then the number of contaminants will be given by

=N n Vcont cont eff,cont, where ncont is the number density of
contaminants and Veff,cont is the effective volume of the bin,
which is given by Equation (8), but with the redshift selection
function of the contaminants f ( )ZZ,cont . Then the Equation (16)
reduces to

ò

ò

c c

f

f

=

+

( ) ( )

( )

( )
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where c ( )R R,true
min max is the correlation function that we

would measure from a non-contaminated sample (i.e., here
c = á ñ á ñ -( )R R, QG QR 1true

min max ), and DC(z) is the trans-
verse comoving distance at redshift z. In the absence of
contaminants, the second term in this equation would be zero,
and we recover the correlation function defined in Equation (5),
which can be approximated by a power-law function. However,
if a large number of contaminants are included that span a large
range in redshift, the second term becomes important, and
given that it does not depend on radius, the same constant is
added everywhere to the cross-correlation function, flattening
its shape, with the degree of flattening dependent on the level
of contamination.

This flattening effect will be even stronger for the auto-
correlation function since it is proportional to the square of both
the number density of contaminants and redshift range they
cover. Then for a contaminated sample one obtains

ò

ò

c c
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ignoring the clustering of the contaminants, which should be
greatly diluted in projection if they span a large range of
redshifts. To take clustering of contaminants into account, an
additional term should be added to this equation to account for
their auto-correlation. Therefore, the smoking gun of high
contamination in the LBG sample would be a flat cross-
correlation and auto-correlation function in Figures 14 and 16,
respectively. Given that we measured a power-law shape for
both correlations, we believe that our LBG sample is not
strongly affected by contamination.

We have explored a third way to check contamination,
which is also independent of our estimate of nG and f ( )ZZ . For

a highly contaminated sample that includes galaxies over a
wide range of redshifts, it would be more appropriate to
measure angular distances instead of transverse comoving
distances. We thus compute the angular correlation function
w q( ) using the standard procedure, where á ñRR is determined
from the angular number density of the data themselves, and
we do not assume anything about the number density or
selection function. In this case we only measure how clustered
our sample is in comparison to a random distribution with the
same number density. This angular correlation function
calculation thus differs from our LBG auto-correlation function
in Section 4.2, where á ñRR was computed from nG and our
selection function f ( )ZZ . For a highly contaminated sample we
expect the angular correlation function to be close to zero on all
angular scales, because the inclusion of uncorrelated galaxies
over a broad redshift range would dilute any real clustering
signal. On the other hand, for a relatively pure sample
composed primarily of LBGs at = z 3.78 0.3, we expect
to measure a power-law angular auto-correlation because we
would be selecting only highly biased galaxies in a small
volume. Note, however, that even for a pure LBG sample, w q( )
computed in this way is not the true angular correlation
function of LBGs, because we are pointing toward overdense
regions around QSOs.
We estimate the angular auto-correlation function of the

LBGs as

w q
q
q

=
á ñ
á ñ

-( ) ( )
( )

( )GG

RR
1, 19

where qá ñ( )GG is the number of LBG–LBG pairs per angular
bin, which is directly measured from our images, and qá ñ( )RR
is the number of random–random pairs per angular bin. The

qá ñ( )RR quantity was estimated using a random catalog of
sources created as follows. First, we computed the total number
of LBG candidates in all the fields, then we divided that by the
total unmasked area to get the average angular number density
of LBGs. Second, we multiplied the unmasked area per image
by this average number density to determine the number of
galaxies expected in each field. Finally, we increased the
number of galaxies by a large factor F in order to decrease the
noise in the measurement, and we randomly distributed those
sources on the image and then measured qá ñ( )RR by counting
the pairs of simulated galaxies per angular bin. We then re-
scaled qá ñ( )RR down by F2.
Our measurement of the angular correlation function is shown

in Figure 18. We see a non-flat correlation function, which
suggests that our LBG sample is not highly contaminated.
Assuming a power-law form given by w q q= b-( ) A we
performed a Levenberg–Marquardt least-squares fit to these
data to quantify how consistent the measurement is with a flat
shape (where b = 0). We obtained best-fit parameters of

= A 21.56 39.54 and b = 1.07 0.49. Given the large
error bars in the measurement we were unable to discard a
correlation function consistent with zero; however, as we show
in the next subsection, if the LBG sample were highly
contaminated then the angular correlation function would be
much flatter. The fact that we measure a signal in Figure 18
suggests that we are measuring real LBG clustering.
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5.3. Robustness of Clustering Measurements against
Changes in Color Selection

Here, we study the impact of using different color selections
on our clustering measurements to demonstrate that our results
are not significantly impacted by contamination, and to show
that our Monte Carlo simulation of the completeness is robust if
we change the color-selection criteria. To this end we have
defined different LBG selection criteria, and for each one we
compute the cross-correlation, auto-correlation, and angular
auto-correlation function. The cross-correlation and auto-
correlation functions were fitted in each case using an MLE
following the same procedure as described in Section 4. We
consider a progression of seven different selections, from the
most permissive Case 1, which selects the majority of z∼ 4
LBGs, but also likely incurs a large fraction of low-redshift
contaminants, to the most conservative Case 7, which results in
a low completeness for z∼ 4 LBGs, but ensures low
contamination. These results are shown in Figure 19, and we
give the best-fit values for each case in Table 7. There we also
tabulate the best-fit correlation lengths for a fixed g = 2.0 for
the QSO–LBG cross-correlation, and g = 1.5 for the LBG
auto-correlation, in order to study how r0 varies for the
different cases. Note that for the three most permissive Cases
1–3, we measure a flat correlation function and hence do not
quote fits for fixed γ. Additionally for those cases we had to use
a different prior for the MLE fit, since flat correlation functions
result in small values for the slope and large values for the
correlation length, which are not covered by the prior used for
the other cases. We only quote the best-fit parameters for Cases
1–3 because the 1σ confidence region extends beyond the prior,
precluding reliable error estimates.

We find that the cross-correlation function flattens and its
amplitude increases for more permissive selections that
increase the level of contamination, and the auto-correlation
function shows a similar but even stronger tendency. This is the
behavior that we expected as we describe in Section 5.2 and
according to Equations (17) and (18). As for the angular
correlation function, we find that the more conservative the
selection, the steeper the slope of w q( ) and the more significant
its departure from zero. These are again the trends we expect

because reduced contamination results in a more strongly
clustered sample of z∼ 4 galaxies, selected from a narrow
redshift slice, reducing the amount that the clustering is diluted
by projection. Note, however, that for the less conservative
cases (i.e., Case 1 and Case 2), where the sample is dominated
by contaminants, the angular correlation function is close to
zero, but not perfectly consistent with b = 0. We believe that
the measurement of a weak clustering signal in these cases
results from the actual clustering of foreground contaminants,
which is diluted by the line-of-sight projection, but nevertheless
remains strong enough to not be perfectly consistent with zero.
The takeaway message from Figure 19 is that we observe

convergence of both the cross-correlation and auto-correlation
functions for the more conservative selections. Specifically, we
find stable results for Cases 5–7, with the only significant
difference being the S/N of the clustering measurements,
resulting from the smaller sample of LBGs selected in the more
conservative cases. In Figures 20 and 21 we plot the values of
the cross-correlation length rQG0 (for fixed g = 2.0) and auto-
correlation length rGG0 (for fixed g = 1.5), respectively, for the
four most conservative selections. The convergence of the
correlation lengths demonstrates that (1) we do not suffer large
contamination and hence our results are robust against
contamination, (2) our Monte Carlo simulation of the selection
function is reliable, since it results in consistent measurements
as the color selection and selection function are varied, and (3)
our results are largely independent of the exact color-selection
region adopted. For these reasons we simply adopt Case 5 to
present the final results in this paper.
Finally, we performed one last test to establish that the

redshift selection function modeled from our Monte Carlo is
essentially correct. We compared the total observed QSO–
LBGs pairs in all the fields á ñQG obs for each selection with the
expected value á ñQG exp based on our clustering measurements,
and our Monte Carlo determination of the redshift selection
function. Specifically, for each selection the á ñQG obs was
measured by summing the observed QSO–LBGs pairs over the
fields up to scales of ~ -R h9 cMpc1 , and Poisson errors were
computed for this measurement. The expected value á ñQG exp

for each field was computed using Equation (10), where we
computed the corresponding f ( )ZZ using our Monte Carlo
simulation method described in Section 3.1 for each selection
criterion. For all the cases, we used = -r h6.93 cMpc0

QG 1 and
g = 2.4, which are the best-fit parameters for our fiducial color
selection (Case 5; see Figure 19) in the computation of
á ñQG exp . The total expected number of QSO–LBG pairs in the
whole survey, á ñQG exp , was computed by summing á ñQG exp

over the bins and over the fields.
If the contamination is low, and the redshift selection

function f ( )ZZ is correctly computed for each case, we expect
that á ñQG exp should be equal to á ñQG obs. As the sample
becomes more contaminated we expect that á ñQG obs will
exceed á ñQG exp and increasingly deviate from it for more
permissive selections. The results of this test are shown in
Figure 22, where we plot á ñQG obs versus á ñQG exp for the seven
color selections we considered, and compare to the line
á ñ = á ñQG QGexp obs (solid line). We find that the total number
of observed QSO–LBGs pairs is consistent with our expecta-
tions for the three more conservative selections Cases 5–7, but
that á ñQG obs exceeds á ñQG exp for more permissive selections,
with the deviations progressively increasing as more con-
taminants are included. Note that by construction we will have

Figure 18. Angular auto-correlation function measurement for the LBG
sample. This measurement is used to test if the sample is contaminated. If the
sample were highly contaminated, w q =( ) 0 at every scale and a power-law fit
with slope β would be consistent with zero. We find that the LBG sample is not
highly contaminated, given their power-law shape in this plot, which is well
fitted by w q q= -( ) 21.56 1.07 (red line).
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á ñ = á ñQG QGobs exp for Case 5, since the clustering measure-
ments (á ñQG obs) were fit to determine the correlation function
parameters, which go into the computation of á ñQG exp . But the
fact that the expected á ñQG exp matches the observed á ñQG obs for
the more conservative Cases 6 and 7 demonstrates that (1) the
modeling of the redshift selection function f ( )ZZ is correct, (2)
the contamination is insignificant, and (3) our clustering
measurements are robust.

6. Summary and Conclusions

The strong observed auto-correlation of QSOs at >z 3.5
indicates that they inhabit massive dark matter halos with

> M M10halo
12 , which implies QSO environments should

exhibit an enhancement of galaxies manifest as a strong QSO–
galaxy cross-correlation function. We characterized the envir-
onments of six QSO fields at z= 3.78 that were chosen to host
massive BHs ( M109 ). The fields were imaged using VLT/
FORS1 with two custom NB filters, and the broad-band rGUNN,

to identify LBGs using a novel technique that selects them in a
redshift range ∼3.3 times smaller than that typically probed
when selecting LBGs with broad-band filters. This significantly
reduces the line-of-sight projection effects that have hampered
previous searches for overdensities around z 5 QSOs.
Since we used a non-standard filter set to select LBGs, we

performed detailed Monte Carlo simulations to model LBG
colors, define our selection criteria, and compute the redshift
selection function and volume probed by our survey. This new
method effectively selects LBGs in a narrow redshift range, but
the color loci of z 3.78 LBGs and low-redshift galaxies
overlap more than with traditional LBG selection using broader
filters. Defining a pure sample free from low-redshift
contaminants required adopting stricter color cuts, which
decreased the completeness of the resulting LBG sample. We
devised selection criteria that resulted in~26% completeness at
z= 3.78, and detected 44 LBGs in our six fields, corresponding
to a number density of 0.19 LBGs arcmin−2. Our survey
probed D z 0.3, and covered a volume equal to 14,782 -h 3

Figure 19. Impact of contaminants on the clustering measurements. We show seven different selection criteria and their respective clustering measurements. From left
to right we show the color–color plot showing the color cuts used and the photometry. The cross-correlation, including the best fit according to our MLE estimator and
the theoretical expectation of c( )R R,min max calculated from the QSO and LBGs auto-correlation functions and assuming a deterministic bias model (dashed line). The
auto-correlation measurement, including the best fit according to our MLE estimator, and the LBG auto-correlation in blank fields at z ∼ 4 measured by Ouchi et al.
(2004b) (dotted line). Finally, we show the angular auto-correlation function, with a power law fit w q q= b-( ) A , with the bA, values indicated in the top right corner.
In the three correlation function plots we show the best fit in each case as a red curve and the best fit for our fiducial selection (i.e., Case 5) as a blue curve. From top to
bottom we show selections progressively more conservative, and thus less contaminated. The selection used in this paper to measure the clustering properties of z ∼ 4
LBGs in QSO environments correspond to Case 5. We detected a convergence in the clustering measurements for the three last cases.
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cMpc3 within < -R h9 cMpc1 from the QSO, and we found
on average 1.5 times more galaxies than expected in random
locations of the universe.

Our work resulted in the first volume-averaged projected
QSO–LBG cross-correlation function at z∼ 4. We fit our
measurements with a (real space) power-law cross-correlation

function, and found = -
+ -r h6.93 cMpc0

QG
1.89
2.13 1 and g = -

+2.4 0.5
0.3.

When we fixed the slope at g = 2.0 we found =r0
QG

-
+ -h8.83 cMpc1.51

1.39 1 . This strong cross-correlation function is in
agreement with the theoretical expectation for the cross-
correlation assuming a deterministic bias model, which can be

Table 7
Best-fit Parameters for the Cross-correlation and Auto-correlation Functions for the Seven Cases Shown in Figure 19

Cross-correlation Auto-correlation

Selection criteria rQG0 γ g=r0, 2.0
QG rGG0 γ g=r0, 1.5

GG

- >( )NB NB 0.30571 596

1 - < - <( )0.6 NB r 0.8596 GUNN 873.03 0.7 5456.67 0.9
- >( )NB NB571 596

- +( )0.7 NB r 0.0596 GUNN

- >( )NB NB 0.50571 596

2 - < - <( )0.6 NB r 0.8596 GUNN 198.96 0.6 1100.00 0.8
- >( )NB NB571 596

- +( )0.7 NB r 0.6596 GUNN

- >( )NB NB 0.70571 596

3 - < - <( )0.6 NB r 0.8596 GUNN 25.67 1.3 261.08 0.8
- >( )NB NB571 596

- +( )0.7 NB r 0.9596 GUNN

- >( )NB NB 1.05571 596

4 - < - <( )0.6 NB r 0.8596 GUNN -
+10.25 2.08

2.18
-
+2.0 0.3

0.3
-
+10.25 1.19

1.13
-
+41.17 4.19

8.52
-
+1.3 0.1

0.1
-
+31.23 1.32

1.27

- >( )NB NB571 596

- +( )0.7 NB r 0.9596 GUNN

- >( )NB NB 1.20571 596

5 - < - <( )0.6 NB r 0.8596 GUNN -
+6.93 1.89

2.13
-
+2.4 0.5

0.3
-
+8.83 1.51

1.39
-
+21.59 2.96

3.73
-
+1.5 0.2

0.1
-
+21.59 1.69

1.72

- >( )NB NB571 596

- +( )0.7 NB r 0.9596 GUNN

- >( )NB NB 1.30571 596

6 - < - <( )0.6 NB r 0.8596 GUNN -
+6.22 1.92

2.53
-
+2.6 0.6

0.3
-
+8.83 1.77

1.61
-
+14.96 1.93

2.83
-
+1.9 0.2

0.1
-
+19.94 2.17

2.20

- >( )NB NB571 596

- +( )0.7 NB r 0.9596 GUNN

- >( )NB NB 1.45571 596

7 - < - <( )0.6 NB r 0.8596 GUNN -
+6.46 3.61

2.95
-
+2.4 0.8

0.6
-
+7.88 2.46

2.15
-
+13.06 2.93

4.21
-
+1.9 0.4

0.2
-
+16.62 3.25

3.42

- >( )NB NB571 596

- +( )0.7 NB r 0.9596 GUNN

Note.r0 is shown in -(h 1 cMpc) units.

Figure 20. Best-fit rQG0 values for a fixed g = 2.0 for the four most
conservative selections shown in Figure 19. We detect a convergence of the
correlation length. The horizontal dashed line indicates the best-fit rQG0 value
for Case 5.

Figure 21. Best-fit rGG0 values for a fixed g = 1.5 for the four most
conservative selections shown in Figure 19. We detected a convergence of the
correlation length. The horizontal dashed line indicates the best-fit rGG0 value
for Case 5.
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estimated using the auto-correlation of both LBGs and QSOs
at z∼ 4.

We also measured the auto-correlation function of LBGs
near these QSOs and found an auto-correlation length of

= -
+ -r h21.59 cMpc0

GG
1.69
1.72 1 for a fixed slope of g = 1.5, which

is ∼4 times higher than the measured auto-correlation length of
LBGs in blank fields at the same redshift. Our measurement of
an enhanced LBG auto-correlation in QSO environments, and
the strong QSO–LBG cross-correlation, both indicate that
QSOs at z∼ 4 trace massive dark matter halos in the early
universe, which are the likely progenitors of massive clusters of
galaxies at z=0.

We demonstrated that our results are robust against
contamination and that our selection function modeling is
reliable, by varying our color-selection criteria and showing
that the cross-correlation and auto-correlation functions are
converged. Spectroscopic follow-up of our LBGs candidates
would provide an additional and definitive test of the reliability
of our novel color-selection technique. However, because the
colors of LBGs in our filters do not separate as cleanly from
contaminants as for broad-band LBG selection, we had to
choose relatively conservative color cuts that recovered only
26% of LBGs. As such, we believe that the preferred approach
to search for overdensities around ~ –z 4 6 QSOs using NB
filters is to perform traditional LAE selection. Although LAE
selection also only selects a fraction of the total population of
high-redshift galaxies (Stark et al. 2010, 2011; Curtis-Lake
et al. 2012), the primary advantages are: (1) contamination
(from low-redshift line-emitters) is very low, and (2) the
background number density is known from wide-field
observations of blank fields (Hu et al. 2004; Shimasaku
et al. 2006; Murayama et al. 2007; Ouchi et al. 2008).

The challenge for the future is to perform similar QSO–
galaxy clustering analyses at higher redshifts. Indeed, if QSOs
at ~ –z 5 6 trace halos of similar masses as those at z∼ 4
(i.e.,  M M10halo

12 ), then we expect a strong QSO–galaxy

cross-correlation function. Clustering studies based on both
broad-band and narrow-band imaging, as well as follow-up
spectroscopy, are now needed to search for these overdensities
around QSOs, and to clarify the relationship between early
supermassive BHs and the formation of structure in the early
universe.
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