58 research outputs found

    Epicuticular Wax Load of Near-Isogenic Barley Lines Differing in Glaucousness

    Get PDF
    Scanning electron microscopy observations of epicuticular waxes on flag leaves (blades and sheaths) and ears were carried out on a pair of near-isogenic lines of two-row barley (Hordeum vulgare L. ), derived from cv. Troubadour, differing in their degree of glaucousness (wax bloom). Plants were grown under irrigated and rainfed mediterranean conditions. Wax bloom in flag leaves consisted mainly of thin wax deposits over the blade, and tubes over the sheath. Wax bloom in the blade was denser and more uniformly arranged on the adaxial than on the abaxial side. In the ears, tubular waxes predominated, forming dense patches on awns and lemmas, and becoming sparse on inner bracts such as the palea. Wax bloom increased under rainfed conditions in both lines. There were marked differences between the lines in the extent of deposition of crystallized epicuticular waxes in the leaf sheath and the ear, whereas differences in the leaf blade were less evident. Wax bloom was almost absent on the sheaths and ear of the non-glaucous line. These results suggest separate genetic control of epicuticular wax deposition on different parts of barley plants. The role of wax bloom in two related ecophysiological parameters, canopy reflectance and cuticular conductance to water diffusion, was also studied. Reflectance by the canopy in the 400 to 700 nm wavelengths was over 50% higher in the glaucous than in the non-glaucous line under rainfed conditions. Under irrigated conditions, flag leaf blades of the non-glaucous line showed the highest epidermal conductance. Ears showed no clear differences in epidermal conductance between lines or growth conditions

    Comparative performance of the stable isotope signatures of carbon, nitrogen and oxygen in assessing early vigour and grain yield in durum wheat

    Get PDF
    The present paper studied the performance of the stable isotope signatures of carbon (δ13C), nitrogen (δ15N) and oxygen (δ18O) in plants when used to assess early vigour and grain yield (GY) in durum wheat growing under mild and moderate Mediterranean stress conditions. A collection of 114 recombinant inbred lines was grown under rainfed (RF) and supplementary irrigation (IR) conditions. Broad sense heritabilities (H2) for GY and harvest index (HI) were higher under RF conditions than under IR. Broad sense heritabilities for δ13C were always above 0·60, regardless of the plant part studied, with similar values for IR and RF trials. Some of the largest genetic correlations with GY were those shown by the δ13C content of the flag leaf blade and mature grains. Under both water treatments, mature grains showed the highest negative correlations between δ13C and GY across genotypes. Flag leaf δ13C was negatively correlated with GY only under RF conditions. The δ13C in seedlings was negatively correlated, under IR conditions only, with GY but also with early vigour. The sources of variation in early vigour were studied by stepwise analysis using the stable isotope signatures measured in seedlings. The δ13C was able to explain almost 0·20 of this variation under RF, but up to 0·30 under IR. In addition, nitrogen concentration in seedlings accounted for another 0·05 of variation, increasing the amount explained to 0·35. The sources of variation in GY were also studied through stable isotope signatures and biomass of different plant parts: δ13C was always the first parameter to appear in the models for both water conditions, explaining c. 0·20 of the variation. The second parameter (δ15N or N concentration of grain, or biomass at maturity) depended on the water conditions and the plant tissue being analysed. Oxygen isotope composition (δ18O) was only able to explain a small amount of the variation in GY. In this regard, despite the known and previously described value of δ13C as a tool in breeding, δ15N is confirmed as an additional tool in the present study. Oxygen isotope composition does not seem to offer any potential, at least under the conditions of the present study

    Asymmetric distribution of pl10 and bruno2, new members of a conserved core of early germline determinants in cephalochordates

    Get PDF
    Molecular fingerprinting of conserved germline and somatic "stemness" markers in different taxa have been key in defining the mechanism of germline specification ("preformation" or "epigenesis"), as well as expression domains of somatic progenitors. The distribution of molecular markers for primordial germ cells (PGCs), including vasa, nanos, and piwil1, as well as Vasa antibody staining, support a determinative mechanism of germline specification in the cephalochordate Branchiostoma lanceolatum, similarly to other amphioxus species. pl10 and bruno2, but not bruno4/6, are also expressed in a pattern consistent with these other germline genes, adding to our repertoire of PGC markers in lancelets. Expression of nanos, vasa, and the remaining markers (musashi, pufA, pufB, pumilio, and piwil2) may define populations of putative somatic progenitors in the tailbud, the amphioxus posterior growth zone, or zones of proliferative activity. Finally, we also identify a novel expression domain for musashi, a classic neural stem cell marker, during notochord development in amphioxus. These results are discussed in the context of germline determination in other taxa, stem cell regulation, and regenerative capacity in adult amphioxus

    Mesa Redonda: la nueva medida de libertad vigilada. Vídeo 1/2

    No full text
    corecore