764 research outputs found

    Gateway to What?

    Get PDF

    A Comparison of a Brain-Computer Interface and an Eye Tracker: Is There a More Appropriate Technology for Controlling a Virtual Keyboard in an ALS Patient?

    Get PDF
    The ability of people affected by amyotrophic lateral sclerosis (ALS), muscular dystrophy or spinal cord injuries to physically interact with the environment, is usually reduced. In some cases, these patients suffer from a syndrome known as locked-in syndrome (LIS), defined by the patient’s inability to make any move-ment but blinks and eye movements. Tech communication systems available for people in LIS are very limited, being those based on eye-tracking and brain-computer interface (BCI) the most useful for these patients. A comparative study between both technologies in an ALS patient is carried out: an eye tracker and a visual P300-based BCI. The purpose of the study presented in this paper is to show that the choice of the technology could depend on user´s preference. The evaluation of performance, workload and other subjective measures will allow us to determine the usability of the systems. The obtained results suggest that, even if for this patient the BCI technology is more appropriate, the technology should be always tested and adapted for each user.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Evaluation of tantalum for mercury containment in the SNAP-8 boiler

    Get PDF
    Corrosion testing of tantalum for mercury containment in SNAP 8 boile

    Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients.

    Get PDF
    Due to loss of tactile feedback the assessment of tumor margins during robotic surgery is based only on visual inspection, which is neither significantly sensitive nor specific. Here we demonstrate time-resolved fluorescence spectroscopy (TRFS) as a novel technique to complement the visual inspection of oral cancers during transoral robotic surgery (TORS) in real-time and without the need for exogenous contrast agents. TRFS enables identification of cancerous tissue by its distinct autofluorescence signature that is associated with the alteration of tissue structure and biochemical profile. A prototype TRFS instrument was integrated synergistically with the da Vinci Surgical robot and the combined system was validated in swine and human patients. Label-free and real-time assessment and visualization of tissue biochemical features during robotic surgery procedure, as demonstrated here, not only has the potential to improve the intraoperative decision making during TORS but also other robotic procedures without modification of conventional clinical protocols

    Filtered Noise Can Mimic Low-Dimensional Chaotic Attractors

    Get PDF
    This contribution presents four results. First, calculations indicate that when examined by the Grassberger-Procaccia algorithm alone, filtered noise can mimic low-dimensional chaotic attractors. Given the ubiquity Of signal filtering in experimental investigations, this is potentially important. Second, a criterion is derived which provides an estimate of the minimum data accuracy needed to resolve the dimension of an attractor. Third, it is shown that a criterion derived by Eckmann and Ruelle [Physica D 56, 185 (1992)] to estimate the minimum number of data points required in a Grassberger-Procaccia calculation can be used to provide a further check on these dimension estimates. Fourth, it is shown that surrogate data techniques recently published by Theiler and his colleagues [in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubanks (Addison Wesley, Reading, MA, 1992)] can successfully distinguish between linearly correlated noise and nonlinear structure. These results, and most particularly the first, indicate that Grassberger-Procaccia results must be interpreted with far greater circumspection than has previously been the case, and that the algorithm should be used in combination with additional procedures such as calculations with surrogate data. When filtered signals are examined by this algorithm alone, a finite noninteger value of D2 is consistent with low-dimensional chaotic behavior, but it is certainly not a definitive diagnostic of chaos

    Filtered Noise Can Mimic Low-Dimensional Chaotic Attractors

    Get PDF
    This contribution presents four results. First, calculations indicate that when examined by the Grassberger-Procaccia algorithm alone, filtered noise can mimic low-dimensional chaotic attractors. Given the ubiquity Of signal filtering in experimental investigations, this is potentially important. Second, a criterion is derived which provides an estimate of the minimum data accuracy needed to resolve the dimension of an attractor. Third, it is shown that a criterion derived by Eckmann and Ruelle [Physica D 56, 185 (1992)] to estimate the minimum number of data points required in a Grassberger-Procaccia calculation can be used to provide a further check on these dimension estimates. Fourth, it is shown that surrogate data techniques recently published by Theiler and his colleagues [in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubanks (Addison Wesley, Reading, MA, 1992)] can successfully distinguish between linearly correlated noise and nonlinear structure. These results, and most particularly the first, indicate that Grassberger-Procaccia results must be interpreted with far greater circumspection than has previously been the case, and that the algorithm should be used in combination with additional procedures such as calculations with surrogate data. When filtered signals are examined by this algorithm alone, a finite noninteger value of D2 is consistent with low-dimensional chaotic behavior, but it is certainly not a definitive diagnostic of chaos

    Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instablity

    Get PDF
    Context: People with chronic ankle instability (CAI) exhibit less weight-bearing dorsiflexion range of motion (ROM) and less knee flexion during landing than people with stable ankles. Examining the relationship between dorsiflexion ROM and landing biomechanics may identify a modifiable factor associated with altered kinematics and kinetics during landing tasks. Objective: To examine the relationship between weight-bearing dorsiflexion ROM and single-legged landing biomechanics in persons with CAI. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Fifteen physically active persons with CAI (5 men, 10 women; age = 21.9 ± 2.1 years, height = 168.7 ± 9.0 cm, mass = 69.4 ± 13.3 kg) participated. Intervention(s): Participants performed dorsiflexion ROM and single-legged landings from a 40-cm height. Sagittal-plane kinematics of the lower extremity and ground reaction forces (GRFs) were captured during landing. Main Outcome Measure(s): Static dorsiflexion was measured using the weight-bearing–lunge test. Kinematics of the ankle, knee, and hip were observed at initial contact, maximum angle, and sagittal displacement. Sagittal displacements of the ankle, knee, and hip were summed to examine overall sagittal displacement. Kinetic variables were maximum posterior and vertical GRFs normalized to body weight. We used Pearson product moment correlations to evaluate the relationships between dorsiflexion ROM and landing biomechanics. Correlations (r) were interpreted as weak (0.00–0.40), moderate (0.41–0.69), or strong (0.70–1.00). The coefficient of determination (r2) was used to determine the amount of explained variance among variables. Results: Static dorsiflexion ROM was moderately correlated with maximum dorsiflexion (r = 0.49, r2 = 0.24), ankle displacement (r = 0.47, r2 = 0.22), and total displacement (r = 0.67, r2 = 0.45) during landing. Dorsiflexion ROM measured statically and during landing demonstrated moderate to strong correlations with maximum knee (r = 0.69–0.74, r2 = 0.47–0.55) and hip (r = 0.50–0.64, r2 = 0.25–0.40) flexion, hip (r = 0.53–0.55, r2 = 0.28–0.30) and knee (r = 0.53–0.70, r2 = 0.28–0.49) displacement, and vertical GRF (−0.47– −0.50, r2 = 0.22–0.25). Conclusions: Dorsiflexion ROM was moderately to strongly related to sagittal-plane kinematics and maximum vertical GRF during single-legged landing in persons with CAI. Persons with less dorsiflexion ROM demonstrated a more erect landing posture and greater GRF

    Filtered Noise Can Mimic Low-Dimensional Chaotic Attractors

    Get PDF
    This contribution presents four results. First, calculations indicate that when examined by the Grassberger-Procaccia algorithm alone, filtered noise can mimic low-dimensional chaotic attractors. Given the ubiquity Of signal filtering in experimental investigations, this is potentially important. Second, a criterion is derived which provides an estimate of the minimum data accuracy needed to resolve the dimension of an attractor. Third, it is shown that a criterion derived by Eckmann and Ruelle [Physica D 56, 185 (1992)] to estimate the minimum number of data points required in a Grassberger-Procaccia calculation can be used to provide a further check on these dimension estimates. Fourth, it is shown that surrogate data techniques recently published by Theiler and his colleagues [in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubanks (Addison Wesley, Reading, MA, 1992)] can successfully distinguish between linearly correlated noise and nonlinear structure. These results, and most particularly the first, indicate that Grassberger-Procaccia results must be interpreted with far greater circumspection than has previously been the case, and that the algorithm should be used in combination with additional procedures such as calculations with surrogate data. When filtered signals are examined by this algorithm alone, a finite noninteger value of D2 is consistent with low-dimensional chaotic behavior, but it is certainly not a definitive diagnostic of chaos

    Seasonal Movements, Aggregations and Diving Behavior of Atlantic Bluefin Tuna (Thunnus thynnus) Revealed with Archival Tags

    Get PDF
    Electronic tags were used to examine the seasonal movements, aggregations and diving behaviors of Atlantic bluefin tuna (Thunnus thynnus) to better understand their migration ecology and oceanic habitat utilization. Implantable archival tags (n = 561) were deployed in bluefin tuna from 1996 to 2005 and 106 tags were recovered. Movement paths of the fish were reconstructed using light level and sea-surface-temperature-based geolocation estimates. To quantify habitat utilization we employed a weighted kernel estimation technique that removed the biases of deployment location and track length. Throughout the North Atlantic, high residence times (167±33 days) were identified in four spatially confined regions on a seasonal scale. Within each region, bluefin tuna experienced distinct temperature regimes and displayed different diving behaviors. The mean diving depths within the high-use areas were significantly shallower and the dive frequency and the variance in internal temperature significantly higher than during transit movements between the high-use areas. Residence time in the more northern latitude high-use areas was significantly correlated with levels of primary productivity. The regions of aggregation are associated with areas of abundant prey and potentially represent critical foraging habitats that have seasonally abundant prey. Throughout the North Atlantic mean diving depth was significantly correlated with the depth of the thermocline, and dive behavior changed in relation to the stratification of the water column. In this study, with numerous multi-year tracks, there appear to be repeatable patterns of clear aggregation areas that potentially are changing with environmental conditions. The high concentrations of bluefin tuna in predictable locations indicate that Atlantic bluefin tuna are vulnerable to concentrated fishing efforts in the regions of foraging aggregations
    • …
    corecore