144 research outputs found

    Reactivation of the mitosis-promoting factor in postmitotic cardiomyocytes

    Get PDF
    Cardiomyocytes cease to divide shortly after birth and an irreversible cell cycle arrest is evident accompanied by the downregulation of cyclin-dependent kinase activities. To get a better understanding of the cardiac cell cycle and its regulation, the effect of functional recovery of the mitosis-promoting factor (MPF) consisting of cyclin B1 and the cyclin-dependent kinase Cdc2 was assessed in primary cultures of postmitotic ventricular adult rat cardiomyocytes ( ARC). Gene transfer into ARC was achieved using the adenovirus-enhanced transferrinfection system that was characterized by the absence of cytotoxic events. Simultaneous ectopic expression of wild-type versions of cyclin B1 and Cdc2 was sufficient to induce MPF activity. Reestablished MPF resulted in a mitotic phenotype, marked by an abnormal condensation of the nuclei, histone H3 phosphorylation and variable degree of decay of the contractile apparatus. Although a complete cell division was not observed, the results provided conclusive evidence that cell cycle-related events in postmitotic cardiomyocytes could be triggered by genetic intervention downstream of the G1/S checkpoint. This will be of importance to design novel strategies to overcome the proliferation arrest in adult cardiomyocytes

    Cryoultramicrotomy and Immunocytochemistry in the Analysis of Muscle Fine Structure

    Get PDF
    Cryoultramicrotomy, which avoids the use of harsh fixation procedures, deleterious dehydration and plastic embedding can be combined with immunocytochemis try to determine the ultra-structural localization of cellular proteins. Our attempts to use the cryosectioning technique in combination with immunolabelling to bridge the gap between light and electron microscopic analysis of muscle morphology have enabled us to obtain new information on fibre typing at the ultrastructural level. Furthermore, we have obtained a marked improvement in the resolution of myofibrillar structures by using semithin cryosections for fluorescence microscopy. Data are also presented on correlated light and electron microscope immunocytochemistry of myocardial intermediate filaments confirming the presence of longitudinally oriented intermediate filaments of desmin in the region of the intercalated discs of mammalian cardiac myocytes, whereas elsewhere in the myocyte the bulk of intermediate filaments of desmin is concentrated in the intermyofibrillar space at the level of the Z disc

    Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals <i>SNORA55</i> as a driver of prostate cancer progression

    Get PDF
    Metastasis is the primary cause of death in prostate cancer (PCa) patients. Small nucleolar RNAs (snoRNAs) have long been considered "housekeeping" genes with no relevance for cancer biology. Emerging evidence has challenged this assumption, suggesting that snoRNA expression is frequently modulated during cancer progression. Despite this, no study has systematically addressed the prognostic and functional significance of snoRNAs in PCa. We performed RNA Sequencing on paired metastatic/non-metastatic PCa xenografts derived from clinical specimens. The clinical significance of differentially expressed snoRNAs was further investigated in two independent primary PCa cohorts (131 and 43 patients, respectively). The snoRNA demonstrating the strongest association with clinical outcome was quantified in PCa patient-derived serum samples and its functional relevance was investigated in PCa cells via gene expression profiling, pathway analysis and gene silencing. Our comparison revealed 21 differentially expressed snoRNAs in the metastatic vs. non-metastatic xenografts. Of those, 12 were represented in clinical databases and were further analyzed. SNORA55 emerged as a predictor of shorter relapse-free survival (results confirmed in two independent databases). SNORA55 was reproducibly detectable in serum samples from PCa patients. SNORA55 silencing in PCa cell lines significantly inhibited cell proliferation and migration. Pathway analysis revealed that SNORA55 expression is significantly associated with growth factor signaling and pro-inflammatory cytokine expression in PCa. Our results demonstrate that SNORA55 up-regulation predicts PCa progression and that silencing this non-coding gene affects PCa cell proliferation and metastatic potential, thus positioning it as both a novel biomarker and therapeutic target

    Comparison of gene expression profiles in core biopsies and corresponding surgical breast cancer samples

    Get PDF
    INTRODUCTION: Gene expression profiling has been successfully used to classify breast cancer into clinically distinct subtypes, and to predict the risk of recurrence and treatment response. The aim of this study was to investigate whether the gene expression profile (GEP) detected in a core biopsy (CB) is representative for the entire tumor, since CB is an important tool in breast cancer diagnosis. Moreover, we investigated whether performing CBs prior to the surgical excision could influence the GEP of the respective tumor. METHODS: We quantified the RNA expression of 60 relevant genes by quantitative real-time PCR in paired CBs and surgical specimens from 22 untreated primary breast cancer patients. Subsequently, expression data were compared with independent GEPs obtained from tumors of 317 patients without preceding CB. RESULTS: In 82% of the cases the GEP detected in the CB correlated very well with the corresponding profile in the surgical sample (r(s )≥ 0.95, p < 0.001). Gene-by-gene analysis revealed four genes significantly elevated in the surgical sample compared to the CB; these comprised genes mainly involved in inflammation and the wound repair process as well as in tumor invasion and metastasis. CONCLUSION: A GEP detected in a CB are representative for the entire tumor and is, therefore, of clinical relevance. The observed alterations of individual genes after performance of CB deserve attention since they might impact the clinical interpretation with respect to prognosis and therapy prediction of the GEP as detected in the surgical specimen following CB performance

    Pooled Analysis of Prognostic Impact of Urokinase-Type Plasminogen Activator and Its Inhibitor PAI-1 in 8377 Breast Cancer Patients

    Get PDF
    Background: Urokinase-type plasminogen activator (uPA) and its inhibitor (PAI-1) play essential roles in tumor invasion and metastasis. High levels of both uPA and PAI-1 are associated with poor prognosis in breast cancer patients. To confirm the prognostic value of uPA and PAI-1 in primary breast cancer, we reanalyzed individual patient data provided by members of the European Organization for Research and Treatment of Cancer-Receptor and Biomarker Group (EORTC-RBG). Methods: The study included 18 datasets involving 8377 breast cancer patients. During follow-up (median 79 months), 35% of the patients relapsed and 27% died. Levels of uPA and PAI-1 in tumor tissue extracts were determined by different immunoassays; values were ranked within each dataset and divided by the number of patients in that dataset to produce fractional ranks that could be compared directly across datasets. Associations of ranks of uPA and PAI-1 levels with relapse-free survival (RFS) and overall survival (OS) were analyzed by Cox multivariable regression analysis stratified by dataset, including the following traditional prognostic variables: age, menopausal status, lymph node status, tumor size, histologic grade, and steroid hormone-receptor status. All P values were two-sided. Results: Apart from lymph node status, high levels of uPA and PAI-1 were the strongest predictors of both poor RFS and poor OS in the analyses of all patients. Moreover, in both lymph node-positive and lymph node-negative patients, higher uPA and PAI-1 values were independently associated with poor RFS and poor OS. For (untreated) lymph node-negative patients in particular, uPA and PAI-1 included together showed strong prognostic ability (all P<.001). Conclusions: This pooled analysis of the EORTC-RBG datasets confirmed the strong and independent prognostic value of uPA and PAI-1 in primary breast cancer. For patients with lymph node-negative breast cancer, uPA and PAI-1 measurements in primary tumors may be especially useful for designing individualized treatment strategie

    ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense, is highly expressed in human cancer

    Get PDF
    Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are highly activated in cancer and involved in tumorigenesis and resistance to anti-cancer therapy. UPR is becoming a promising target of anti-cancer therapies. Thus, the identification of UPR components that are highly expressed in cancer could offer new therapeutic opportunity. In this study, we demonstrate that Endoplasmic Reticulum Metallo Protease 1 (ERMP1) is broadly expressed in a high percentage of breast, colo-rectal, lung, and ovary cancers, regardless of their stage and grade. Moreover, we show that loss of ERMP1 expression significantly hampers proliferation, migration and invasiveness of cancer cells. Furthermore, we show that this protein is an important player in the UPR and defense against oxidative stress. ERMP1 expression is strongly affected by reticular stress induced by thapsigargin and other oxidative stresses. ERMP1 silencing during reticular stress impairs the activation of PERK, a key sensor of the UPR activation. Loss of ERMP1 also prevents the expression of GRP78/BiP, a UPR stress marker involved in the activation of the survival pathway. Finally, ERMP1 silencing in cells exposed to hypoxia leads to inhibition of the Nrf2-mediated anti-oxidant response and to reduction of accumulation of HIF-1, the master transcription factor instructing cells to respond to hypoxic stress. Our results suggest that ERMP1 could act as a molecular starter to the survival response induced by extracellular stresses. Moreover, they provide the rationale for the design of ERMP1-targeting drugs that could act by inhibiting the UPR initial adaptive response of cancer cells and impair cell survival

    Enhanced Proliferation of Monolayer Cultures of Embryonic Stem (ES) Cell-Derived Cardiomyocytes Following Acute Loss of Retinoblastoma

    Get PDF
    Background: Cardiomyocyte (CM) cell cycle analysis has been impeded because of a reliance on primary neonatal cultures of poorly proliferating cells or chronic transgenic animal models with innate compensatory mechanisms. Methodology/Principal Findings: We describe an in vitro model consisting of monolayer cultures of highly proliferative embryonic stem (ES) cell-derived CM. Following induction with ascorbate and selection with puromycin, early CM cultures are.98 % pure, and at least 85 % of the cells actively proliferate. During the proliferative stage, cells express high levels of E2F3a, B-Myb and phosphorylated forms of retinoblastoma (Rb), but with continued cultivation, cells stop dividing and mature functionally. This developmental transition is characterized by a switch from slow skeletal to cardiac TnI, an increase in binucleation, cardiac calsequestrin and hypophosphorylated Rb, a decrease in E2F3, B-Myb and atrial natriuretic factor, and the establishment of a more negative resting membrane potential. Although previous publications suggested that Rb was not necessary for cell cycle control in heart, we find following acute knockdown of Rb that this factor actively regulates progression through the G1 checkpoint and that its loss promotes proliferation at the expense of CM maturation. Conclusions/Significance: We have established a unique model system for studying cardiac cell cycle progression, and show in contrast to previous reports that Rb actively regulates both cell cycle progression through the G1 checkpoint an

    Cardiovascular development: towards biomedical applicability: Epicardium-derived cells in cardiogenesis and cardiac regeneration

    Get PDF
    During cardiogenesis, the epicardium grows from the proepicardial organ to form the outermost layer of the early heart. Part of the epicardium undergoes epithelial-mesenchymal transformation, and migrates into the myocardium. These epicardium- derived cells differentiate into interstitial fibroblasts, coronary smooth muscle cells, and perivascular fibroblasts. Moreover, epicardium-derived cells are important regulators of formation of the compact myocardium, the coronary vasculature, and the Purkinje fiber network, thus being essential for proper cardiac development. The fibrous structures of the heart such as the fibrous heart skeleton and the semilunar and atrioventricular valves also depend on a contribution of these cells during development. We hypothesise that the essential properties of epicardium-derived cells can be recapitulated in adult diseased myocardium. These cells can therefore be considered as a novel source of adult stem cells useful in clinical cardiac regeneration therapy
    • …
    corecore