91 research outputs found

    Recovering the stationary phase condition for accurately obtaining scattering and tunneling times

    Full text link
    The stationary phase method is often employed for computing tunneling {\em phase} times of analytically-continuous {\em gaussian} or infinite-bandwidth step pulses which collide with a potential barrier. The indiscriminate utilization of this method without considering the barrier boundary effects leads to some misconceptions in the interpretation of the phase times. After reexamining the above barrier diffusion problem where we notice the wave packet collision necessarily leads to the possibility of multiple reflected and transmitted wave packets, we study the phase times for tunneling/reflecting particles in a framework where an idea of multiple wave packet decomposition is recovered. To partially overcome the analytical incongruities which rise up when tunneling phase time expressions are obtained, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a one dimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted waves.Comment: 32 pages, 5 figures, 1 tabl

    Limitations on the principle of stationary phase when it is applied to tunneling analysis

    Get PDF
    Using a recently developed procedure - multiple wave packet decomposition - here we study the phase time formulation for tunneling/reflecting particles colliding with a potential barrier. To partially overcome the analytical difficulties which frequently arise when the stationary phase method is employed for deriving phase (tunneling) time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and an one-dimensional rectangular potential barrier. Summing the amplitudes of the reflected and transmitted waves - using a method we call multiple peak decomposition - is shown to allow reconstruction of the scattered wave packets in a way which allows the stationary phase principle to be recovered.Comment: 17 pages, 2 figure

    Topological Insulators with Inversion Symmetry

    Get PDF
    Topological insulators are materials with a bulk excitation gap generated by the spin orbit interaction, and which are different from conventional insulators. This distinction is characterized by Z_2 topological invariants, which characterize the groundstate. In two dimensions there is a single Z_2 invariant which distinguishes the ordinary insulator from the quantum spin Hall phase. In three dimensions there are four Z_2 invariants, which distinguish the ordinary insulator from "weak" and "strong" topological insulators. These phases are characterized by the presence of gapless surface (or edge) states. In the 2D quantum spin Hall phase and the 3D strong topological insulator these states are robust and are insensitive to weak disorder and interactions. In this paper we show that the presence of inversion symmetry greatly simplifies the problem of evaluating the Z_2 invariants. We show that the invariants can be determined from the knowledge of the parity of the occupied Bloch wavefunctions at the time reversal invariant points in the Brillouin zone. Using this approach, we predict a number of specific materials are strong topological insulators, including the semiconducting alloy Bi_{1-x} Sb_x as well as \alpha-Sn and HgTe under uniaxial strain. This paper also includes an expanded discussion of our formulation of the topological insulators in both two and three dimensions, as well as implications for experiments.Comment: 16 pages, 7 figures; published versio

    Negative phase time for Scattering at Quantum Wells: A Microwave Analogy Experiment

    Full text link
    If a quantum mechanical particle is scattered by a potential well, the wave function of the particle can propagate with negative phase time. Due to the analogy of the Schr\"odinger and the Helmholtz equation this phenomenon is expected to be observable for electromagnetic wave propagation. Experimental data of electromagnetic wells realized by wave guides filled with different dielectrics confirm this conjecture now.Comment: 10 pages, 6 figure

    Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence

    Get PDF
    Using a two-photon interference technique, we measure the delay for single-photon wavepackets to be transmitted through a multilayer dielectric mirror, which functions as a ``photonic bandgap'' medium. By varying the angle of incidence, we are able to confirm the behavior predicted by the group delay (stationary phase approximation), including a variation of the delay time from superluminal to subluminal as the band edge is tuned towards to the wavelength of our photons. The agreement with theory is better than 0.5 femtoseconds (less than one quarter of an optical period) except at large angles of incidence. The source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure

    Conditional probabilities in quantum theory, and the tunneling time controversy

    Get PDF
    It is argued that there is a sensible way to define conditional probabilities in quantum mechanics, assuming only Bayes's theorem and standard quantum theory. These probabilities are equivalent to the ``weak measurement'' predictions due to Aharonov {\it et al.}, and hence describe the outcomes of real measurements made on subensembles. In particular, this approach is used to address the question of the history of a particle which has tunnelled across a barrier. A {\it gedankenexperiment} is presented to demonstrate the physically testable implications of the results of these calculations, along with graphs of the time-evolution of the conditional probability distribution for a tunneling particle and for one undergoing allowed transmission. Numerical results are also presented for the effects of loss in a bandgap medium on transmission and on reflection, as a function of the position of the lossy region; such loss should provide a feasible, though indirect, test of the present conclusions. It is argued that the effects of loss on the pulse {\it delay time} are related to the imaginary value of the momentum of a tunneling particle, and it is suggested that this might help explain a small discrepancy in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts

    Negative group delay for Dirac particles traveling through a potential well

    Full text link
    The properties of group delay for Dirac particles traveling through a potential well are investigated. A necessary condition is put forward for the group delay to be negative. It is shown that this negative group delay is closely related to its anomalous dependence on the width of the potential well. In order to demonstrate the validity of stationary-phase approach, numerical simulations are made for Gaussian-shaped temporal wave packets. A restriction to the potential-well's width is obtained that is necessary for the wave packet to remain distortionless in the travelling. Numerical comparison shows that the relativistic group delay is larger than its corresponding non-relativistic one.Comment: 10 pages, 5 figure

    Tin telluride: a weakly co-elastic metal

    Full text link
    We report resonant ultrasound spectroscopy (RUS), dilatometry/magnetostriction, magnetotransport, magnetization, specific heat, and 119^{119}Sn M\"ossbauer spectroscopy measurements on SnTe and Sn0.995_{0.995}Cr0.005_{0.005}Te. Hall measurements at T=77T=77 K indicate that our Bridgman-grown single crystals have a pp-type carrier concentration of 3.4×10193.4 \times 10^{19} cm3^{-3} and that our Cr-doped crystals have an nn-type concentration of 5.8×10225.8 \times 10^{22} cm3^{-3}. Although our SnTe crystals are diamagnetic over the temperature range 2KT1100K2\, \text{K} \leq T \leq 1100\, \text{K}, the Cr-doped crystals are room temperature ferromagnets with a Curie temperature of 294 K. For each sample type, three-terminal capacitive dilatometry measurements detect a subtle 0.5 micron distortion at Tc85T_c \approx 85 K. Whereas our RUS measurements on SnTe show elastic hardening near the structural transition, pointing to co-elastic behavior, similar measurements on Sn0.995_{0.995}Cr0.005_{0.005}Te show a pronounced softening, pointing to ferroelastic behavior. Effective Debye temperature, θD\theta_D, values of SnTe obtained from 119^{119}Sn M\"ossbauer studies show a hardening of phonons in the range 60--115K (θD\theta_D = 162K) as compared with the 100--300K range (θD\theta_D = 150K). In addition, a precursor softening extending over approximately 100 K anticipates this collapse at the critical temperature, and quantitative analysis over three decades of its reduced modulus finds ΔC44/C44=A(TT0)/T0κ\Delta C_{44}/C_{44}=A|(T-T_0)/T_0|^{-\kappa} with κ=0.50±0.02\kappa = 0.50 \pm 0.02 , a value indicating a three-dimensional softening of phonon branches at a temperature T075T_0 \sim 75 K, considerably below TcT_c. We suggest that the differences in these two types of elastic behaviors lie in the absence of elastic domain wall motion in the one case and their nucleation in the other

    On a universal photonic tunnelling time

    Full text link
    We consider photonic tunnelling through evanescent regions and obtain general analytic expressions for the transit (phase) time τ\tau (in the opaque barrier limit) in order to study the recently proposed ``universality'' property according to which τ\tau is given by the reciprocal of the photon frequency. We consider different physical phenomena (corresponding to performed experiments) and show that such a property is only an approximation. In particular we find that the ``correction'' factor is a constant term for total internal reflection and quarter-wave photonic bandgap, while it is frequency-dependent in the case of undersized waveguide and distributed Bragg reflector. The comparison of our predictions with the experimental results shows quite a good agreement with observations and reveals the range of applicability of the approximated ``universality'' property.Comment: RevTeX, 8 pages, 4 figures, 1 table; subsection added with a new experiment analyzed, some other minor change

    Superluminal Localized Solutions to Maxwell Equations propagating along a waveguide: The finite-energy case

    Get PDF
    In a previous paper of ours [Phys. Rev. E64 (2001) 066603, e-print physics/0001039] we have shown localized (non-evanescent) solutions to Maxwell equations to exist, which propagate without distortion with Superluminal speed along normal-sized waveguides, and consist in trains of "X-shaped" beams. Those solutions possessed therefore infinite energy. In this note we show how to obtain, by contrast, finite-energy solutions, with the same localization and Superluminality properties. [PACS nos.: 41.20.Jb; 03.50.De; 03.30.+p; 84.40.Az; 42.82.Et. Keywords: Wave-guides; Localized solutions to Maxwell equations; Superluminal waves; Bessel beams; Limited-dispersion beams; Finite-energy waves; Electromagnetic wavelets; X-shaped waves; Evanescent waves; Electromagnetism; Microwaves; Optics; Special relativity; Localized acoustic waves; Seismic waves; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (12 pages), plus 10 figure
    corecore