Topological insulators are materials with a bulk excitation gap generated by
the spin orbit interaction, and which are different from conventional
insulators. This distinction is characterized by Z_2 topological invariants,
which characterize the groundstate. In two dimensions there is a single Z_2
invariant which distinguishes the ordinary insulator from the quantum spin Hall
phase. In three dimensions there are four Z_2 invariants, which distinguish the
ordinary insulator from "weak" and "strong" topological insulators. These
phases are characterized by the presence of gapless surface (or edge) states.
In the 2D quantum spin Hall phase and the 3D strong topological insulator these
states are robust and are insensitive to weak disorder and interactions. In
this paper we show that the presence of inversion symmetry greatly simplifies
the problem of evaluating the Z_2 invariants. We show that the invariants can
be determined from the knowledge of the parity of the occupied Bloch
wavefunctions at the time reversal invariant points in the Brillouin zone.
Using this approach, we predict a number of specific materials are strong
topological insulators, including the semiconducting alloy Bi_{1-x} Sb_x as
well as \alpha-Sn and HgTe under uniaxial strain. This paper also includes an
expanded discussion of our formulation of the topological insulators in both
two and three dimensions, as well as implications for experiments.Comment: 16 pages, 7 figures; published versio