230 research outputs found

    Spatial distribution of micrometre‐scale porosity and permeability across the damage zone of a reverse‐reactivated normal fault in a tight sandstone : Insights from the Otway Basin, SE Australia

    Get PDF
    This research forms part of a PhD project supported by the Australian Research Council [Discovery Project DP160101158] and through an Australian Government Research Training Program Scholarship. Dave Healy acknowledges the support of the Natural Environment Research Council (NERC, UK) through the award NE/N003063/1 ‘Quantifying the Anisotropy of Permeability in Stressed Rock’. This study was also funded by scholarships from the Petroleum Exploration Society of Australia and the Australian Petroleum Production and Exploration Association. We thank Gordon Holm for preparing thin sections and Colin Taylor for carrying out particle size measurements and mercury injection capillary pressure analyses. Aoife McFadden and David Kelsey from Adelaide Microscopy, Braden Morgan, and Sophie Harland are acknowledged for their assistance with laboratory work. Field assistants James Hall, Rowan Hansberry, and Lachlan Furness are also gratefully acknowledged for their assistance with sample collection. Discussions with Ian Duddy on the mineralogy of the Eumeralla Formation are also greatly appreciated. This forms TRaX record 416.Peer reviewedPublisher PD

    RIPK3-mediated cell death is involved in DUX4-mediated toxicity in facioscapulohumeral dystrophy

    Get PDF
    BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is caused by mutations leading to the aberrant expression of the DUX4 transcription factor in muscles. DUX4 was proposed to induce cell death, but the involvement of different death pathways is still discussed. A possible pro-apoptotic role of DUX4 was proposed, but as FSHD muscles are characterized by necrosis and inflammatory infiltrates, non-apoptotic pathways may be also involved. METHODS: We explored DUX4-mediated cell death by focusing on the role of one regulated necrosis pathway called necroptosis, which is regulated by RIPK3. We investigated the effect of necroptosis on cell death in vitro and in vivo experiments using RIPK3 inhibitors and a RIPK3-deficient transgenic mouse model. RESULTS: We showed in vitro that DUX4 expression causes a caspase-independent and RIPK3-mediated cell death in both myoblasts and myotubes. In vivo, RIPK3-deficient animals present improved body and muscle weights, a reduction of the aberrant activation of the DUX4 network genes, and an improvement of muscle histology. CONCLUSIONS: These results provide evidence for a role of RIPK3 in DUX4-mediated cell death and open new avenues of research

    Evaluation of expression and function of the H+/myo-inositol transporter HMIT;

    Get PDF
    BACKGROUND: The phosphoinositide (PIns) signalling pathway regulates a series of neuronal processes, such as neurotransmitter release, that are thought to be altered in mood disorders. Furthermore, mood-stabilising drugs have been shown to inhibit key enzymes that regulate PIns production and alter neuronal growth cone morphology in an inositol-reversible manner. Here, we describe analyses of expression and function of the recently identified H+/myo-inositol transporter (HMIT) investigated as a potential regulator of PIns signalling. RESULTS: We show that HMIT is primarily a neuronal transporter widely expressed in the rat and human brain, with particularly high levels in the hippocampus and cortex, as shown by immunohistochemistry. The transporter is localised at the Golgi apparatus in primary cultured neurones. No HMIT-mediated electrophysiological responses were detected in rat brain neurones or slices; in addition, inositol transport and homeostasis were unaffected in HMIT targeted null-mutant mice. CONCLUSION: Together, these data do not support a role for HMIT as a neuronal plasma membrane inositol transporter, as previously proposed. However, we observed that HMIT can transport inositol triphosphate, indicating unanticipated intracellular functions for this transporter that may be relevant to mood control

    Topological aggregation, the twin paradox and the No Show paradox

    Get PDF
    International audienceConsider the framework of topological aggregation introduced by Chichilnisky (1980). We prove that in this framework the Twin Paradox and the No Show Paradox cannot be avoided. Anonymity and unanimity are not needed to obtain these results

    SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton

    Get PDF
    Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2N308D and ROCK activation in the developing heart
    corecore