72 research outputs found
Transport of Cytoplasmically Synthesized Proteins into the Mitochondria in a Cell Free System from Neurospora crassa
Synthesis and transport of mitochondrial proteins were followed in a cell-free homogenate of Neurospora crassa in which mitochondrial translation was inhibited. Proteins synthesized on cytoplasmic ribosomes are transferred into the mitochondrial fraction. The relative amounts of proteins which are transferred in vitro are comparable to those transferred in whole cells.
Cycloheximide and puromycin inhibit the synthesis of mitochondrial proteins but not their transfer into mitochondria.
The transfer of immunoprecipitable mitochondrial proteins was demonstrated for matrix proteins, carboxyatractyloside-binding protein and cytochrome c.
Import of proteins into mitochondria exhibits a degree of specificity. The transport mechanism differentiates between newly synthesized proteins and preexistent mitochondrial proteins, at least in the case of matrix proteins.
In the cell-free homogenate membrane-bound ribosomes are more active in the synthesis of mitochondrial proteins than are free ribosomes. The finished translation products appear to be released from the membrane-bound ribosomes into the cytosol rather than into the membrane vesicles.
The results suggest that the transport of cytoplasmically synthesized mitochondrial proteins is essentially independent of cytoplasmic translation; that cytoplasmically synthesized mitochondrial proteins exist in an extramitochondrial pool prior to import; that the site of this pool is the cytosol for at least some of the mitochondrial proteins; and that the precursors in the extramitochondrial pool differ in structure or conformation from the functional proteins in the mitochondria
Genome-Wide Assessment of AU-Rich Elements by the AREScore Algorithm
In mammalian cells, AU-rich elements (AREs) are well known regulatory sequences located in the 3′ untranslated region (UTR) of many short-lived mRNAs. AREs cause mRNAs to be degraded rapidly and thereby suppress gene expression at the posttranscriptional level. Based on the number of AUUUA pentamers, their proximity, and surrounding AU-rich regions, we generated an algorithm termed AREScore that identifies AREs and provides a numerical assessment of their strength. By analyzing the AREScore distribution in the transcriptomes of 14 metazoan species, we provide evidence that AREs were selected for in several vertebrates and Drosophila melanogaster. We then measured mRNA expression levels genome-wide to address the importance of AREs in SL2 cells derived from D. melanogaster hemocytes. Tis11, a zinc finger RNA–binding protein homologous to mammalian tristetraprolin, was found to target ARE–containing reporter mRNAs for rapid degradation in SL2 cells. Drosophila mRNAs whose expression is elevated upon knock down of Tis11 were found to have higher AREScores. Moreover high AREScores correlate with reduced mRNA expression levels on a genome-wide scale. The precise measurement of degradation rates for 26 Drosophila mRNAs revealed that the AREScore is a very good predictor of short-lived mRNAs. Taken together, this study introduces AREScore as a simple tool to identify ARE–containing mRNAs and provides compelling evidence that AREs are widespread regulatory elements in Drosophila
3′UTR-Mediated Gene Silencing of the Mixed Lineage Leukemia (MLL) Gene
Translocations involving the Mixed Lineage Leukemia (MLL) gene generate in-frame fusions of MLL with more than 50 different partner genes (PGs). Common to all MLL translocations is the exchange not only of coding regions, but also of MLL and PG 3′-untranslated regions (3′UTRs). As a result, the MLL-PG fusion is normally highly expressed and considered the main driver of leukemia development, whereas the function of the PG-MLL fusions in leukemic disease is unclear. As 3′UTRs have been recognized as determinant regions for regulation of gene expression, we hypothesized that loss of the MLL 3′UTR could have a role in generating high MLL-PG levels and leukemia development. Here, we first tested the MLL-PG and PG-MLL mRNA levels in different leukemic cells and tumours and uncovered differential expression that indicates strong repression by the MLL-3′UTR. Reporter assays confirmed that the 3′UTR of MLL, but not of its main PGs, harbours a region that imposes a strong gene silencing effect. Gene suppression by the MLL 3′UTR was largely microRNA independent and did not affect mRNA stability, but inhibited transcription. This effect can at least partially be attributed to a tighter interaction of the MLL 3′UTR with RNA polymerase II than PG 3′UTRs, affecting its phosphorylation state. Altogether, our findings indicate that MLL translocations relieve oncogenic MLL-PG fusions from the repressive MLL 3′UTR, contributing to higher activity of these genes and leukaemia development
Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells.
While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.Cell Death and Differentiation advance online publication, 29 September 2017; doi:10.1038/cdd.2017.150
Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands
Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence
Systematic Analysis of Cis-Elements in Unstable mRNAs Demonstrates that CUGBP1 Is a Key Regulator of mRNA Decay in Muscle Cells
BACKGROUND: Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS: We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE) and AU-rich (ARE) elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES) cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1, consistent with the role of CUGBP1 as a destabilizing factor. CONCLUSIONS: Taken together, our results systematically establish cis-acting determinants of mRNA decay rates in C2C12 myoblast cells and demonstrate that CUGBP1 associates with GREs to regulate decay of a wide range of mRNAs including several that are critical for muscle development
Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells
available in PMC 2011 November 01.Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.Human Frontier Science Program (Strasbourg, France)Howard Hughes Medical InstituteBurroughs Wellcome Fund (Career Award at the Scientific Interface
The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited number of EBV miRNA targets have been identified; thus, the role of EBV miRNAs in viral pathogenesis and/or lymphomagenesis is not well defined. Here, we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) combined with deep sequencing and computational analysis to comprehensively examine the viral and cellular miRNA targetome in EBV strain B95-8-infected lymphoblastoid cell lines (LCLs). We identified 7,827 miRNA-interaction sites in 3,492 cellular 3′UTRs. 531 of these sites contained seed matches to viral miRNAs. 24 PAR-CLIP-identified miRNA:3′UTR interactions were confirmed by reporter assays. Our results reveal that EBV miRNAs predominantly target cellular transcripts during latent infection, thereby manipulating the host environment. Furthermore, targets of EBV miRNAs are involved in multiple cellular processes that are directly relevant to viral infection, including innate immunity, cell survival, and cell proliferation. Finally, we present evidence that myc-regulated host miRNAs from the miR-17/92 cluster can regulate latent viral gene expression. This comprehensive survey of the miRNA targetome in EBV-infected B cells represents a key step towards defining the functions of EBV-encoded miRNAs, and potentially, identifying novel therapeutic targets for EBV-associated malignancies
Transcriptional Activation of the Adenoviral Genome Is Mediated by Capsid Protein VI
Gene expression of DNA viruses requires nuclear import of the viral genome. Human
Adenoviruses (Ads), like most DNA viruses, encode factors within early
transcription units promoting their own gene expression and counteracting
cellular antiviral defense mechanisms. The cellular transcriptional repressor
Daxx prevents viral gene expression through the assembly of repressive chromatin
remodeling complexes targeting incoming viral genomes. However, it has remained
unclear how initial transcriptional activation of the adenoviral genome is
achieved. Here we show that Daxx mediated repression of the immediate early Ad
E1A promoter is efficiently counteracted by the capsid protein VI. This requires
a conserved PPxY motif in protein VI. Capsid proteins from other DNA viruses
were also shown to activate the Ad E1A promoter independent of Ad gene
expression and support virus replication. Our results show how Ad entry is
connected to transcriptional activation of their genome in the nucleus. Our data
further suggest a common principle for genome activation of DNA viruses by
counteracting Daxx related repressive mechanisms through virion proteins
- …