369 research outputs found

    Growth hormone therapy and respiratory disorders: Long-term follow-up in PWS children

    Get PDF
    Context: Adenotonsillar tissue hypertrophy and obstructive sleep apnea have been reported during short-term GH treatment in children with Prader-Willi syndrome (PWS). Objective: We conducted an observational study to evaluate the effects of long-term GH therapy on sleep-disordered breathing and adenotonsillar hypertrophy in children with PWS. Design: This was a longitudinal observational study. PatientsandMethods:Weevaluated 75 children with genetically confirmedPWS,ofwhom50 fulfilled the criteria and were admitted to our study. The patients were evaluated before treatment (t0), after 6 weeks (t1), after 6 months (t2), after 12 months (t3), and yearly (t4-t6) thereafter, for up to 4 years of GH therapy. The central apnea index, obstructive apnea hypopnea index (OAHI), respiratory disturbance index, and minimal blood oxygen saturation were evaluated overnight using polysomnography. We evaluated the adenotonsillar size using a flexible fiberoptic endoscope. Results: The percentage of patients with an OAHI of 1 increased from 3 to 22, 36, and 38 at t1, t4, and t6, respectively (2 12.2; P .05). We observed a decrease in the respiratory disturbance indexfrom1.4 (t0) to 0.8 (t3) (P.05)andthe centralapneaindexfrom1.2 (t0) to 0.1 (t4) (P.0001). We had to temporarily suspend treatment for 3 patients at t1, t4, and t5 because of severe obstructive sleep apnea. The percentage of patients with severe adenotonsillar hypertrophy was significantly higher at t4 and t5 than at t0. The OAHI directly correlated with the adenoid size (adjusted for age) (P .01) but not with the tonsil size and IGF-1 levels. Conclusion: Long-termGHtreatment in patients withPWSis safe; however,werecommend annual polysomnography and adenotonsillar evaluation

    Displacement of propagating squeezed microwave states

    Full text link
    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states stays constant over a wide range of the displacement power

    Percolation, Morphogenesis, and Burgers Dynamics in Blood Vessels Formation

    Full text link
    Experiments of in vitro formation of blood vessels show that cells randomly spread on a gel matrix autonomously organize to form a connected vascular network. We propose a simple model which reproduces many features of the biological system. We show that both the model and the real system exhibit a fractal behavior at small scales, due to the process of migration and dynamical aggregation, followed at large scale by a random percolation behavior due to the coalescence of aggregates. The results are in good agreement with the analysis performed on the experimental data.Comment: 4 pages, 11 eps figure

    Percolation transition and the onset of non exponential relaxation in fully frustrated models

    Get PDF
    We numerically study the dynamical properties of fully frustrated models in 2 and 3 dimensions. The results obtained support the hypothesis that the percolation transition of the Kasteleyn-Fortuin clusters corresponds to the onset of stretched exponential autocorrelation functions in systems without disorder. This dynamical behavior may be due to the ``large scale'' effects of frustration, present below the percolation threshold. Moreover these results are consistent with the picture suggested by Campbell et al. in space of configurations.Comment: 8 pages, 11 figures, revised versio

    Results from the KASCADE, KASCADE-Grande, and LOPES experiments

    Get PDF
    The origin of high-energy cosmic rays in the energy range from 10^14 to 10^18 eV is explored with the KASCADE and KASCADE-Grande experiments. Radio signals from air showers are measured with the LOPES experiment. An overview on results is given.Comment: Talk at The ninth International Conference on Topics in Astroparticle and Underground Physics, TAUP 2005, Zaragoza, September 10-14, 200
    corecore