60 research outputs found
Hard-Sphere Fluids in Contact with Curved Substrates
The properties of a hard-sphere fluid in contact with hard spherical and
cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is
applied to determine the density profile and surface tension for wide
ranges of radii of the curved walls and densities of the hard-sphere fluid.
Particular attention is paid to investigate the curvature dependence and the
possible existence of a contribution to that is proportional to the
logarithm of the radius of curvature. Moreover, by treating the curved wall as
a second component at infinite dilution we provide an analytical expression for
the surface tension of a hard-sphere fluid close to arbitrary hard convex
walls. The agreement between the analytical expression and DFT is good. Our
results show no signs for the existence of a logarithmic term in the curvature
dependence of .Comment: 15 pages, 6 figure
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Phase II randomised discontinuation trial of brivanib in patients with advanced solid tumours
Background: Brivanib is a selective inhibitor of vascular endothelial growth factor
and fibroblast growth factor (FGF) signalling. We performed a phase II randomised discontinuation trial of brivanib in 7 tumour types (soft-tissue sarcomas [STS], ovarian cancer, breast
cancer, pancreatic cancer, non-small-cell lung cancer [NSCLC], gastric/esophageal cancer and
transitional cell carcinoma [TCC]).
Patients and methods: During a 12-week open-label lead-in period, patients received brivanib
800 mg daily and were evaluated for FGF2 status by immunohistochemistry. Patients with stable disease at week 12 were randomised to brivanib or placebo. A study steering committee
evaluated week 12 response to determine if enrolment in a tumour type would continue.
The primary objective was progression-free survival (PFS) for brivanib versus placebo in patients with FGF2-positive tumours.
Results: A total of 595 patients were treated, and stable disease was observed at the week 12
randomisation point in all tumour types. Closure decisions were made for breast cancer,
pancreatic cancer, NSCLC, gastric cancer and TCC. Criteria for expansion were met for
STS and ovarian cancer. In 53 randomised patients with STS and FGF2-positive tumours,
the median PFS was 2.8 months for brivanib and 1.4 months for placebo (hazard ratio
[HR]: 0.58, p Z 0.08). For all randomised patients with sarcomas, the median PFS was 2.8
months (95% confidence interval [CI]: 1.4e4.0) for those treated with brivanib compared with
1.4 months (95% CI: 1.3e1.6) for placebo (HR Z 0.64, 95% CI: 0.38e1.07; p Z 0.09). In the
36 randomised patients with ovarian cancer and FGF2-positive tumours, the median PFS was
4.0 (95% CI: 2.6e4.2) months for brivanib and 2.0 months (95% CI: 1.2e2.7) for placebo (HR:
0.56, 95% CI: 0.26e1.22). For all randomised patients with ovarian cancer, the median PFS in
those randomised to brivanib was 4.0 months (95% CI: 2.6e4.2) and was 2.0 months (95% CI:
1.2e2.7) in those randomised to placebo (HR Z 0.54, 95% CI: 0.25e1.17; p Z 0.11).
Conclusion: Brivanib demonstrated activity in STS and ovarian cancer with an acceptable
safety profile. FGF2 expression, as defined in the protocol, is not a predictive biomarker of
the efficacy of brivanib
Ion association in concentrated NaCI brines from ambient to supercritical conditions: results from classical molecular dynamics simulations
Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H(2)O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m) NaCl–water mixtures under ambient (25°C, 1 bar), hydrothermal (325°C, 1 kbar) and deep crustal (625°C, 15 kbar) conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757). With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (Na(n)Cl(m))(n-m )clusters in addition to simple NaCl ion pairs. Large polyatomic (Na(n)Cl(m))(n-m )clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions
Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations
Alkali (Li+, Na+, K+, Rb+, and Cs+) and halide (F−, Cl−, Br−, and I−) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Åqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4PEW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells
Phase II randomised discontinuation trial of brivanib in patients with advanced solid tumours
Background: Brivanib is a selective inhibitor of vascular endothelial growth factor and fibroblast growth factor (FGF) signalling. We performed a phase II randomised discontinuation trial of brivanib in 7 tumour types (soft-tissue sarcomas [STS], ovarian cancer, breast cancer, pancreatic cancer, non-small-cell lung cancer [NSCLC], gastric/esophageal cancer and transitional cell carcinoma [TCC]). Patients and methods: During a 12-week open-label lead-in period, patients received brivanib 800 mg daily and were evaluated for FGF2 status by immunohistochemistry. Patients with stable disease at week 12 were randomised to brivanib or placebo. A study steering committee evaluated week 12 response to determine if enrolment in a tumour type would continue. The primary objective was progression-free survival (PFS) for brivanib versus placebo in patients with FGF2-positive tumours. Results: A total of 595 patients were treated, and stable disease was observed at the week 12 randomisation point in all tumour types. Closure decisions were made for breast cancer, pancreatic cancer, NSCLC, gastric cancer and TCC. Criteria for expansion were met for STS and ovarian cancer. In 53 randomised patients with STS and FGF2-positive tumours, the median PFS was 2.8 months for brivanib and 1.4 months for placebo (hazard ratio [HR]: 0.58, p = 0.08). For all randomised patients with sarcomas, the median PFS was 2.8 months (95% confidence interval [CI]: 1.4–4.0) for those treated with brivanib compared with 1.4 months (95% CI: 1.3–1.6) for placebo (HR = 0.64, 95% CI: 0.38–1.07; p = 0.09). In the 36 randomised patients with ovarian cancer and FGF2-positive tumours, the median PFS was 4.0 (95% CI: 2.6–4.2) months for brivanib and 2.0 months (95% CI: 1.2–2.7) for placebo (HR: 0.56, 95% CI: 0.26–1.22). For all randomised patients with ovarian cancer, the median PFS in those randomised to brivanib was 4.0 months (95% CI: 2.6–4.2) and was 2.0 months (95% CI: 1.2–2.7) in those randomised to placebo (HR = 0.54, 95% CI: 0.25–1.17; p = 0.11). Conclusion: Brivanib demonstrated activity in STS and ovarian cancer with an acceptable safety profile. FGF2 expression, as defined in the protocol, is not a predictive biomarker of the efficacy of brivanib
MONTE-CARLO SIMULATION OF POLYAMPHOLYTE CHAINS
Polyampholyte copolymers containing both positive and negative monomers regularly dispersed along the chain were studied. The Monte Carlo method was used to simulate chains with charged monomers interacting by screened Coulomb potential. The neutral polyampholyte chains collapse due to the attractive electrostatic interactions. The nonneutral chains are in extended conformations due to the repulsive polyelectrolyte effects that dominate the attractive polyampholyte interactions. The results are in good agreement with experiment
Study of the antimicrobial peptide indolicidin and a mutant in micelle medium by molecular dynamics simulation
The antimicrobial peptide indolicidin (IND) and the mutant CP10A in hydrated micelles were studied using molecular dynamics simulations in order to observe whether the molecular dynamics and experimental data could be sufficiently correlated and a detailed description of the interaction of the antimicrobial peptides with a model of the membrane provided by a hydrated micelle system could be obtained. In agreement with the experiments, the simulations showed that the peptides are located near the surface of the micelles. Peptide insertions agree with available experimental data, showing deeper insertion of the mutant compared with the peptide IND. Major insertion into the hydrophobic core of the micelle by all tryptophan and mutated residues of CP10A in relation to IND was observed. The charged residues of the terminus regions of both peptides present similar behavior, indicating that the major differences in the interactions with the micelles of the peptides IND and CP10A occur in the case of the hydrophobic residues.Fundaao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientfico e Tecnologico (CNPq)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior ( CAPES
- …