356 research outputs found

    Analysing vagus nerve spontaneous activity using finite element modelling

    Get PDF
    Objective. Finite element modelling has been widely used to understand the effect of stimulation on the nerve fibres. Yet the literature on analysis of spontaneous nerve activity is much scarcer. In this study, we introduce a method based on a finite element model, to analyse spontaneous nerve activity with a typical bipolar electrode recording setup, enabling the identification of spontaneously active fibres. We applied our method to the vagus nerve, which plays a key role in refractory epilepsy. Approach. We developed a 3D model including dynamic action potential propagation, based on the vagus nerve geometry. The impact of key recording parameters – inter-electrode distance and temperature – and uncontrolled parameters – fibre size and position in the nerve – on the ability to discriminate active fibres were quantified. A specific algorithm was implemented to detect and classify action potentials from recordings and tested on six rats in vivo vagus nerve recordings. Main results. Fibre diameters can be discriminated if they are below 3 µm and 7 µm, respectively for inter-electrode distances of 2 mm and 4 mm. The impact of the position of the fibre inside the nerve on fibre diameter discrimination, is limited. The range of active fibres identified by modelling in the vagus nerve of rats is in agreement with ranges found at histology. Significance. The nerve fibre diameter, directly proportional to the action potential propagation velocity, is related to a specific physiological function. Estimating the source fibre diameter is thus essential to interpret neural recordings. Among many possible applications, the present method was developed in the context of a project to improve vagus nerve stimulation therapy for epilepsy

    Elastin Peptides Signaling Relies on Neuraminidase-1-Dependent Lactosylceramide Generation

    Get PDF
    The sialidase activity of neuraminidase-1 (Neu-1) is responsible for ERK 1/2 pathway activation following binding of elastin peptide on the elastin receptor complex. In this work, we demonstrate that the receptor and lipid rafts colocalize at the plasma membrane. We also show that the disruption of these microdomains as well as their depletion in glycolipids blocks the receptor signaling. Following elastin peptide treatment, the cellular GM3 level decreases while lactosylceramide (LacCer) content increases consistently with a GM3/LacCer conversion. The use of lactose or Neu-1 siRNA blocks this process suggesting that the elastin receptor complex is responsible for this lipid conversion. Flow cytometry analysis confirms this elastin peptide-driven LacCer generation. Further, the use of a monoclonal anti-GM3 blocking antibody shows that GM3 is required for signaling. In conclusion, our data strongly suggest that Neu-1-dependent GM3/LacCer conversion is the key event leading to signaling by the elastin receptor complex. As a consequence, we propose that LacCer is an early messenger for this receptor

    Feasibility and usability of a digital health technology system to monitor mobility and assess medication adherence in mild-to-moderate Parkinson's disease

    Get PDF
    Introduction: Parkinson's disease (PD) is a neurodegenerative disorder which requires complex medication regimens to mitigate motor symptoms. The use of digital health technology systems (DHTSs) to collect mobility and medication data provides an opportunity to objectively quantify the effect of medication on motor performance during day-to-day activities. This insight could inform clinical decision-making, personalise care, and aid self-management. This study investigates the feasibility and usability of a multi-component DHTS to remotely assess self-reported medication adherence and monitor mobility in people with Parkinson's (PwP). Methods: Thirty participants with PD [Hoehn and Yahr stage I (n = 1) and II (n = 29)] were recruited for this cross-sectional study. Participants were required to wear, and where appropriate, interact with a DHTS (smartwatch, inertial measurement unit, and smartphone) for seven consecutive days to assess medication adherence and monitor digital mobility outcomes and contextual factors. Participants reported their daily motor complications [motor fluctuations and dyskinesias (i.e., involuntary movements)] in a diary. Following the monitoring period, participants completed a questionnaire to gauge the usability of the DHTS. Feasibility was assessed through the percentage of data collected, and usability through analysis of qualitative questionnaire feedback. Results: Adherence to each device exceeded 70% and ranged from 73 to 97%. Overall, the DHTS was well tolerated with 17/30 participants giving a score > 75% [average score for these participants = 89%, from 0 (worst) to 100 (best)] for its usability. Usability of the DHTS was significantly associated with age (ρ = −0.560, BCa 95% CI [−0.791, −0.207]). This study identified means to improve usability of the DHTS by addressing technical and design issues of the smartwatch. Feasibility, usability and acceptability were identified as key themes from PwP qualitative feedback on the DHTS. Conclusion: This study highlighted the feasibility and usability of our integrated DHTS to remotely assess medication adherence and monitor mobility in people with mild-to-moderate Parkinson's disease. Further work is necessary to determine whether this DHTS can be implemented for clinical decision-making to optimise management of PwP

    Measuring Central Bank Independence: Ordering, Ranking, or Scoring?

    Get PDF
    Central bank independence (CBI)as an area for international comparison and for study by international political economists has been around for approximately two decades, spurred on by the work of Bade and Parkin (1982). It probably reached its full fruition with the work of Cukierman and others, centering on work done at the World Bank. There are others too, and we should not ignore them, but since the mid-1990s most of the work done has centered on the Cukierman-type model. Interest in the CBI intensified after models of monetary policy found the likelihood of an inflationary bias in monetary policy operated by democratic governments. That analysis turned on the potential for monetary surprises being perpetrated by governments seeking electoral advantage. Later analysis found that if such incentives were fully anticipated by the public, inflation rates in democracies are higher than they would be if somehow government could make a credible commitment to price stability. The search began for how to establish monetary institutions that can be viewed as credible commitments. Delegation of monetary policy to an independent central bank was one strand of that exploration

    Feasibility and usability of a digital health technology system to monitor mobility and assess medication adherence in mild-to-moderate Parkinson's disease

    Get PDF
    Introduction: Parkinson's disease (PD) is a neurodegenerative disorder which requires complex medication regimens to mitigate motor symptoms. The use of digital health technology systems (DHTSs) to collect mobility and medication data provides an opportunity to objectively quantify the effect of medication on motor performance during day-to-day activities. This insight could inform clinical decision-making, personalise care, and aid self-management. This study investigates the feasibility and usability of a multi-component DHTS to remotely assess self-reported medication adherence and monitor mobility in people with Parkinson's (PwP). Methods: Thirty participants with PD [Hoehn and Yahr stage I (n = 1) and II (n = 29)] were recruited for this cross-sectional study. Participants were required to wear, and where appropriate, interact with a DHTS (smartwatch, inertial measurement unit, and smartphone) for seven consecutive days to assess medication adherence and monitor digital mobility outcomes and contextual factors. Participants reported their daily motor complications [motor fluctuations and dyskinesias (i.e., involuntary movements)] in a diary. Following the monitoring period, participants completed a questionnaire to gauge the usability of the DHTS. Feasibility was assessed through the percentage of data collected, and usability through analysis of qualitative questionnaire feedback. Results: Adherence to each device exceeded 70% and ranged from 73 to 97%. Overall, the DHTS was well tolerated with 17/30 participants giving a score > 75% [average score for these participants = 89%, from 0 (worst) to 100 (best)] for its usability. Usability of the DHTS was significantly associated with age (ρ = −0.560, BCa 95% CI [−0.791, −0.207]). This study identified means to improve usability of the DHTS by addressing technical and design issues of the smartwatch. Feasibility, usability and acceptability were identified as key themes from PwP qualitative feedback on the DHTS. Conclusion: This study highlighted the feasibility and usability of our integrated DHTS to remotely assess medication adherence and monitor mobility in people with mild-to-moderate Parkinson's disease. Further work is necessary to determine whether this DHTS can be implemented for clinical decision-making to optimise management of PwP
    corecore