3,046 research outputs found

    On thermalization of a boost-invariant non Abelian plasma

    Full text link
    Using a holographic method, we further investigate the relaxation towards the hydrodynamic regime of a boost-invariant non-Abelian plasma taken out-of-equilibrium. In the dual description, the system is driven out-of-equilibrium by boundary sourcing, a deformation of the boundary metric, as proposed by Chesler and Yaffe. The effects of several deformation profiles on the bulk geometry are investigated by the analysis of the corresponding solutions of the Einstein equations. The time of restoration of the hydrodynamic regime is investigated: setting the effective temperature of the system at the end of the boundary quenching to Teff(τ∗)=500T_{eff}(\tau^*)=500 MeV, the hydrodynamic regime is reached after a lapse of time of O{\cal O}(1 fm/c).Comment: 24 pages, 11 figures. Improved numerical analysis, one more appendix, two new figures. To appear in JHE

    Quarkonium dissociation in a far-from-equilibrium holographic setup

    Full text link
    The real-time dissociation of the heavy quarkonium in a strongly coupled boost-invariant non-Abelian plasma relaxing towards equilibrium is analyzed in a holographic framework. The effects driving the plasma out of equilibrium are described by boundary quenching, impulsive variations of the boundary metric. Quarkonium is represented by a classical string with endpoints kept close to the boundary. The evolution of the string profile is computed in the time-dependent geometry, and the dissociation time is evaluated for different configurations with respect to the direction of the plasma expansion. Dissociation occurs fastly for the quarkonium placed in the transverse plane.Comment: 14 pages, 8 figures. References added. Matches the published versio

    Mid-Infrared Galaxy Morphology Along the Hubble Sequence

    Full text link
    The mid-infrared emission from 18 nearby galaxies imaged with the IRAC instrument on Spitzer Space Telescope samples the spatial distributions of the reddening-free stellar photospheric emission and the warm dust in the ISM. These two components provide a new framework for galaxy morphological classification, in which the presence of spiral arms and their emission strength relative to the starlight can be measured directly and with high contrast. Four mid-infrared classification methods are explored, three of which are based on quantitative global parameters (colors, bulge-to-disk ratio) similar to those used in the past for optical studies; in this limited sample, all correlate well with traditional B-band classification. We suggest reasons why infrared classification may be superior to optical classification.Comment: ApJS (in press), Spitzer Space Telescope Special Issue; 13 pages, LaTeX (or Latex, etc); Figure 1ab is large, color plate; full-resolution plates in .pdf format available at http://cfa-www.harvard.edu/irac/publications

    Ordinary and Extraordinary Hadrons

    Get PDF
    Resonances and enhancements in meson-meson scattering can be divided into two classes distinguished by their behavior as the number of colors N_c in QCD becomes large: The first are ordinary mesons that become stable as N_c goes to infinity. This class includes textbook q-bar q mesons as well as glueballs and hybrids. The second class, extraordinary mesons, are enhancements that disappear as N_c goes to infinity; they subside into the hadronic continuum. This class includes indistinct and controversial objects that have been classified as q-bar q-bar q q mesons or meson-meson molecules. Pelaez's study of the N_c dependence of unitarized chiral dynamics illustrates both classes: the p-wave pi-pi and K-pi resonances, the rho(770) and K*(892), behave as ordinary mesons; the s-wave pi-pi and K-pi enhancements, the sigma(600) and kappa(800), behave like extraordinary mesons. Ordinary mesons resemble Feshbach resonances while extraordinary mesons look more like effects due to potentials in meson-meson scattering channels. I build and explore toy models along these lines. Finally I discuss some related dynamical issues affecting the interpretation of extraordinary mesons.Comment: 18 pages, 10 figures, talk presented at the 2006 Yukawa International Seminar: New Frontiers in QCD, Kyoto University, November 2006. This talk is dedicated to the memory of R. H. Dalit

    Possible complex annihilation and B -> K pi direct CP asymmetry

    Full text link
    We point out that a sizable strong phase could be generated from the penguin annihilation in the soft-collinear effective theory for B meson decays. Keeping a small scale suppressed by O(Lambda/m_b), Lambda being a hadronic scale and m_b the b quark mass, in the denominators of internal particle propagators without expansion, the resultant strong phase can accommodate the data of the B^0 -> K^-+ pi^+- direct CP asymmetry. Our study reconciles the opposite conclusions on the real or complex penguin annihilation amplitude drawn in the soft-collinear effective theory and in the perturbative QCD approach based on k_T factorization theorem.Comment: 8 pages, 1 figure, added reference

    Quarkonium dissociation in strongly coupled far-from-equilibrium matter: holographic description

    Get PDF
    Abstract The heavy quarkonium real-time dissociation in a strongly coupled non-Abelian matter relaxing to equilibrium is described in a holographic approach. Boundary sourcing, impulsive distortions of the boundary metric, are used to mimic effects driving the matter far-from-equilibrium. Quarkonium is represented by a string with endpoints kept close to the boundary, and its evolution in the time-dependent geometry is studied

    Alignment transition in a nematic liquid crystal due to field-induced breaking of anchoring

    Full text link
    We report on the alignment transition of a nematic liquid crystal from initially homeotropic to quasi-planar due to field-induced anchoring breaking. The initial homeotropic alignment is achieved by Langmuir-Blodgett monolayers. In this geometry the anchoring strength can be evaluated by the Frederiks transition technique. Applying an electric field above a certain threshold provokes turbulent states denoted DSM1 and DSM2. While DSM1 does not affect the anchoring, DSM2 breaks the coupling between the surface and the liquid crystal: switching off the field from a DSM2 state does not immediately restore the homeotropic alignment. Instead, we obtain a quasi-planar metastable alignment. The cell thickness dependence for the transition is related to theComment: 7 pages, LaTeX2e article, 4 figures, 7 EPS files, added references, accepted for publication in Europhysics Letter

    Preliminary realization of an electric-powered hydraulic pump system for a waste compactor truck and a techno-economic analysis

    Get PDF
    Most industrial trucks are equipped with hydraulic systems designed for specic operations, for which the required power is supplied by the internal combustion engine (ICE). The largest share of the power consumption is required by the hydraulic system during idling operations, and, consequently, the current literature focuses on energy saving strategies for the hydraulic system rather than making the vehicle traction more efficient. This study presents the preliminary realization of an electric-powered hydraulic pump system (e-HPS) that drives the lifting of the dumpster and the garbage compaction in a waste compactor truck, rather than traditional ICE-driven hydraulic pump systems (ICE-HPSs). The different components of the e-HPS are described and the battery pack was modelled using the kinetic battery model. The end-of-life of the battery pack was determined to assess the economic feasibility of the proposed e-HPS for the truck lifespan, using numerical simulations. The aim was twofold: To provide an implementation method to retrofit the e-HPS to a conventional waste compactor truck and to assess its economic feasibility, investigating fuel savings during the use phase and the consequent reduction of CO2 emissions. Results show that the total lifespan cost saving achieved a value of 65,000. Furthermore, total CO2 emissions for the e-HPS were about 80% lower than those of the ICE-HPS, highlighting that the e-HPS can provide significant environmental benefits in an urban context

    Blockade and Counterflow Supercurrent in exciton-condensate Josephson junctions

    Get PDF
    We demonstrate that perfect conversion between charged supercurrents in superconductors and neutral supercurrents in electron-hole pair condensates is possible via a new Andreev-like scattering mechanism. As a result, when two superconducting circuits are coupled through a bilayer exciton condensate, the superflow in both layers is drastically modified. Depending on the phase biases the supercurrents can be completely blocked or exhibit perfect drag.Comment: 4 pages, 2 figure
    • …
    corecore