740 research outputs found

    On the possibility of refining by means of optical location some astronomical parameters of the system - Earth-Moon

    Get PDF
    Optical location of moon in Earth-Moon system using artificial light reflector, on lunar surfac

    Результаты социологического исследования по развитию патентной системы для трудовых мигрантов (на примере г. Первоуральска Свердловской области)

    Full text link
    In article the materials received by authors as a result of sociological research, conducted in March-April, 2014 among the foreign citizens who have arrived to Pervouralsk for the purpose of search of "work" and going to carry out work in the territory of Sverdlovsk region according to patents.В статье анализируются материалы, полученные авторами в результате социологического исследования, проведенного в марте-апреле 2014 г. среди иностранных граждан, прибывших в г. Первоуральск с целью поиска «работы» и собирающихся осуществлять трудовую деятельность на территории Свердловской области по патентам.Публикация выполнена в рамках гранта РГНФ-Урал 14-12-66025а «Оценка социально-экономического благополучия Свердловской области в условиях роста трудовой миграции» при поддержке Правительства Свердловской области

    Current Status and New Challenges of The Tunka Radio Extension

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is an antenna array spread over an area of about 1~km2^2. The array is placed at the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) and detects the radio emission of air showers in the band of 30 to 80~MHz. During the last years it was shown that a sparse array such as Tunka-Rex is capable of reconstructing the parameters of the primary particle as accurate as the modern instruments. Based on these results we continue developing our data analysis. Our next goal is the reconstruction of cosmic-ray energy spectrum observed only by a radio instrument. Taking a step towards it, we develop a model of aperture of our instrument and test it against hybrid TAIGA observations and Monte-Carlo simulations. In the present work we give an overview of the current status and results for the last five years of operation of Tunka-Rex and discuss prospects of the cosmic-ray energy estimation with sparse radio arrays.Comment: Proceedings of E+CRS 201

    How quantum bound states bounce and the structure it reveals

    Get PDF
    We investigate how quantum bound states bounce from a hard surface. Our analysis has applications to ab initio calculations of nuclear structure and elastic deformation, energy levels of excitons in semiconductor quantum dots and wells, and cold atomic few-body systems on optical lattices with sharp boundaries. We develop the general theory of elastic reflection for a composite body from a hard wall. On the numerical side we present ab initio calculations for the compression of alpha particles and universal results for two-body states. On the analytical side we derive a universal effective potential that gives the reflection scattering length for shallow two-body states.Comment: final publication version, new lattice results on alpha particle compression, 5 pages, 2 figure

    First analysis of inclined air showers detected by Tunka-Rex

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50^\circ. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers.Comment: ARENA2018 proceeding

    Signal recognition and background suppression by matched filters and neural networks for Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array, which measures the radio emission of the cosmic-ray air-showers in the frequency band of 30-80 MHz. Tunka-Rex is co-located with TAIGA experiment in Siberia and consists of 63 antennas, 57 of them are in a densely instrumented area of about 1 km\textsuperscript{2}. In the present work we discuss the improvements of the signal reconstruction applied for the Tunka-Rex. At the first stage we implemented matched filtering using averaged signals as template. The simulation study has shown that matched filtering allows one to decrease the threshold of signal detection and increase its purity. However, the maximum performance of matched filtering is achievable only in case of white noise, while in reality the noise is not fully random due to different reasons. To recognize hidden features of the noise and treat them, we decided to use convolutional neural network with autoencoder architecture. Taking the recorded trace as an input, the autoencoder returns denoised trace, i.e. removes all signal-unrelated amplitudes. We present the comparison between standard method of signal reconstruction, matched filtering and autoencoder, and discuss the prospects of application of neural networks for lowering the threshold of digital antenna arrays for cosmic-ray detection.Comment: ARENA2018 proceeding

    Improved measurements of the energy and shower maximum of cosmic rays with Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band produced during the air-shower development. As shown by Tunka-Rex, a sparse radio array with about 200 m spacing is able to reconstruct the energy and the depth of the shower maximum with satisfactory precision using simple methods based on parameters of the lateral distribution of amplitudes. The LOFAR experiment has shown that a sophisticated treatment of all individually measured amplitudes of a dense antenna array can make the precision comparable with the resolution of existing optical techniques. We develop these ideas further and present a method based on the treatment of time series of measured signals, i.e. each antenna station provides several points (trace) instead of a single one (amplitude or power). We use the measured shower axis and energy as input for CoREAS simulations: for each measured event we simulate a set of air-showers with proton, helium, nitrogen and iron as primary particle (each primary is simulated about ten times to cover fluctuations in the shower maximum due to the first interaction). Simulated radio pulses are processed with the Tunka-Rex detector response and convoluted with the measured signals. A likelihood fit determines how well the simulated event fits to the measured one. The positions of the shower maxima are defined from the distribution of chi-square values of these fits. When using this improved method instead of the standard one, firstly, the shower maximum of more events can be reconstructed, secondly, the resolution is increased. The performance of the method is demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.Comment: Proceedings of the 35th ICRC 2017, Busan, Kore

    Reconstruction of cosmic ray air showers with Tunka-Rex data using template fitting of radio pulses

    Full text link
    We present an improved method for the precise reconstruction of cosmic ray air showers above 101710^{17} eV with sparse radio arrays. The method is based on the comparison of predictions for radio pulse shapes by CoREAS simulations to measured pulses. We applied our method to the data of Tunka-Rex, a 1 km2^2 radio array in Siberia operating in the frequency band of 30-80 MHz. Tunka-Rex is triggered by the air-Cherenkov detector Tunka-133 and by scintillators (Tunka-Grande). The instrument collects air-shower data since 2012. The present paper describes updated data and signal analyses of Tunka-Rex and details of a new method applied. After efficiency cuts, when Tunka-Rex reaches its full efficiency, the energy resolution of about 10% given by the new method has reached the limit of systematic uncertainties due to the calibration uncertainty and shower-to-shower fluctuations. At the same time the shower maximum reconstruction is significantly improved up to an accuracy of 35 g/cm2^2 compared to the previous method based on the slope of the lateral distribution. We also define and now achieved conditions of the measurements, at which the shower maximum resolution of Tunka-Rex reaches a value of 25 g/cm2^2 and becomes competitive to optical detectors. To check and validate our reconstruction and efficiency cuts we compare individual events to the reconstruction of Tunka-133. Furthermore, we compare the mean of shower maximum as a function of primary energy to the measurements of other experiments.Comment: published versio
    corecore