289 research outputs found

    NaGdF4:Eu3+ Nanoparticles for Enhanced X-ray Excited Optical Imaging.

    Get PDF
    X-ray luminescent nanoparticles (NPs), including lanthanide fluorides, have been evaluated for application to deep tissue in vivo molecular imaging using optical tomography. A combination of high material density, higher atomic number and efficient NIR luminescence from compatible lanthanide dopant ions indicates that particles that consist of ALnF4 (A = alkaline, Ln = lanthanide element) may offer a very attractive class of materials for high resolution, deep tissue imaging with X-ray excitation. NaGdF4:Eu3+ NPs produced an X-ray excited luminescence that was among the most efficient of nanomaterials that have been studied thus far. We have systematically studied factors such as (a) the crystal structure that changes the lattice environment of the doped Eu3+ ions within the unit cell; and extrinsic factors such as (b) a gold coating (with attendant biocompatibility) that couples to a plasmonic excitation, and (c) changes in the NPs surface properties via changes in the pH of the suspending medium-all with a significant impact on the X-ray excited luminescence of NaGdF4:Eu3+NPs. The luminescence from an optimally doped hexagonal phase NaGdF4:Eu3+ nanoparticle was 25% more intense compared to that of a cubic structure. We observed evidence of plasmonic reabsorption of midwavelength emission by a gold coating on hexagonal NaGdF4:Eu3+ NPs; fortunately, the NaGdF4:Eu3+ @Au core-shell NPs retained the efficient 5D0→7F4 NIR (692 nm) luminescence. The NaGdF4:Eu3+ NPs exhibited sensitivity to the ambient pH when excited by X-rays, an effect not seen with UV excitation. The sensitivity to the local environment can be understood in terms of the sensitivity of the excitons that are generated by the high energy X-rays (and not by UV photons) to crystal structure and to the surface state of the particles

    Local atomic and magnetic structure of dilute magnetic semiconductor (Ba,K)(Zn,Mn)2_2As2_2

    Get PDF
    We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba,K)(Zn,Mn)2_2As2_2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5\lesssim 5 \AA, resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic cc-axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system

    The synthesis and characterization of 1111-type diluted magnetic semiconductors (La1-xSrx)(Zn1-xTMx)AsO (TM = Mn, Fe, Co)

    Full text link
    The doping effect of Sr and transition metals Mn, Fe, Co into the direct-gap semiconductor LaZnAsO has been investigated. Our results indicate that the single phase ZrCuSiAs-type tetragonal crystal structure is preserved in (La1-xSrx)(Zn1-xTMx)AsO (TM = Mn, Fe, Co) with the doping level up to x = 0.1. While the system remains semiconducting, doping with Sr and Mn results in ferromagnetic order with TC ~ 30K, and doping with Sr and Fe results in a spin glass like state below ~6K with a saturation moment of ~0.02 muB/Fe, an order of magnitude smaller than the ~0.4 muB/Mn of Sr and Mn doped samples. The same type of magnetic state is observed neither for (Zn,Fe) substitution without carrier doping, nor for Sr and Co doped specimens.Comment: Accepted for publication in EP

    Pressure induced metallization of Cu3N

    Full text link
    We employed accurate full potential density-functional theory and linearized augmented plane wave method to investigate the electronic properties and possible phase transitions of Cu3N under high pressure. The anti perovskite structure Cu3N is a semiconductor with a small indirect band gap at ambient pressure. The band gap becomes narrower with increasing pressure, and the semi-conducting anti ReO3 structure undergoes a semiconductor to semimetal transition at pressure around 8.0 GPa. At higher pressure, a subsequent semimetal to metal transition could take place above 15GPa with a structural transition from anti ReO3 to Cu3Au structure

    Single-cell RNA sequencing reveals cancer stem-like cells and dynamics in tumor microenvironment during cholangiocarcinoma progression

    Get PDF
    Cholangiocarcinoma is a malignancy of the bile ducts that is driven by activities of cancer stem-like cells and characterized by a heterogeneous tumor microenvironment. To better understand the transcriptional profiles of cancer stem-like cells and dynamics in the tumor microenvironment during the progression of cholangiocarcinoma, we performed single-cell RNA analysis on cells collected from three different timepoints of tumorigenesis in a YAP/AKT mouse model. Bulk RNA sequencing data from TCGA (The Cancer Genome Atlas program) and ICGC cohorts were used to verify and support the finding. In vitro and in vivo experiments were performed to assess the stemness of cancer stem-like cells. We identified Tm4sf1high malignant cells as cancer stem-like cells. Across timepoints of cholangiocarcinoma formation in YAP/AKT mice, we found dynamic change in cancer stem-like cell/stromal/immune cell composition. Nevertheless, the dynamic interaction among cancer stem-like cells, immune cells, and stromal cells at different timepoints was elaborated. Collectively, these data serve as a useful resource for better understanding cancer stem-like cell and malignant cell heterogeneity, stromal cell remodeling, and immune cell reprogramming. It also sheds new light on transcriptomic dynamics during cholangiocarcinoma progression at single-cell resolution

    Weakly coupled lithospheric extension in southern Tibet

    Get PDF
    AbstractWest–east extension is a prominent tectonic feature of southern and central Tibet despite ongoing north–south (N–S) convergence between India and Eurasia. Knowledge of deep structure beneath the N–S trending rifts is key to evaluating models proposed for their origin, including gravitational collapse, oblique convergence along the arcuate plate boundary, and mantle upwelling. We model direct S and Moho-reflected SsPmp phases at teleseismic distances to constrain variations in crustal thickness across the major rifts crossed by a ∼900-km long, W–E broadband array in the Lhasa Terrane. Crustal thicknesses are ∼70–80 km. However, Moho depth decreases by ∼10 km within a horizontal distance of 100 km west of the Yadong–Gulu rift (YGR) and Nyainquentanghla mountains (NQTL). This Moho uplift, taken with deep, extensional focal mechanisms and reduced seismic velocity in the upper mantle, suggests that asthenospheric upwelling has significantly contributed to the pattern of extension across the YGR and NQTL. The ∼100-km separation between surface rift and Moho uplift is likely enabled by partial decoupling across a ductile middle crust
    • …
    corecore