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Cholangiocarcinoma is a malignancy of the bile ducts that is driven by activities
of cancer stem-like cells and characterized by a heterogeneous tumor
microenvironment. To better understand the transcriptional profiles of cancer
stem-like cells and dynamics in the tumor microenvironment during the
progression of cholangiocarcinoma, we performed single-cell RNA analysis on cells
collected from three different timepoints of tumorigenesis in a YAP/AKTmousemodel.
Bulk RNA sequencing data fromTCGA (TheCancer GenomeAtlas program) and ICGC
cohorts were used to verify and support the finding. In vitro and in vivo experiments
were performed to assess the stemness of cancer stem-like cells. We identified
Tm4sf1high malignant cells as cancer stem-like cells. Across timepoints of
cholangiocarcinoma formation in YAP/AKT mice, we found dynamic change in
cancer stem-like cell/stromal/immune cell composition. Nevertheless, the dynamic
interaction among cancer stem-like cells, immune cells, and stromal cells at different
timepoints was elaborated. Collectively, these data serve as a useful resource for better
understanding cancer stem-like cell and malignant cell heterogeneity, stromal cell
remodeling, and immunecell reprogramming. It also shedsnew light on transcriptomic
dynamics during cholangiocarcinoma progression at single-cell resolution.
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1 Introduction

Cholangiocarcinoma (CCA) is a lethal malignancy originating
from the epithelial cells lining the bile ducts. Due to its rising global
incidence (Bertuccio et al., 2019), heterogeneous pathology
(Brindley et al., 2021), and resistance to conventional therapy
(Brindley et al., 2021), there is growing need to characterize the
CCA microenvironment to illuminate the molecular process and
explore potential therapeutic strategies (Greten et al., 2023).
Previous investigations have shown that CCA is highly
desmoplastic and comprises entangled dense networks of
inflammatory cells and the extracellular matrix (Brindley et al.,
2021; Fabris et al., 2020; Zhang et al., 2020/11). However, dynamic
change in cell composition and cell–cell crosstalk during CCA
tumorigenesis has not been elaborated.

CSCs (cancer stem-like cells) are a rare subpopulation of tumor
cells with strong tumorigenic capacity. These cells remain in a
relatively quiescent state until exposed to various direct and
indirect signals in the tumor microenvironment (TME). CSCs
have been shown to play critical roles in tumor initiation,
metastasis, chemotherapy resistance, and recurrence upon
activation (Li et al., 2008; Wilson et al., 2011). Cancer stemness
has been shown to be negatively associated with antitumoral
immunity, suggesting that the presence of CSCs remodels the
TME (Miranda et al., 2019; Galassi et al., 2021). This remodeling
results in an immunosuppressive ecosystem partially through
interactions between CSCs and surrounding stromal cells, which
include immune cells (Miranda et al., 2019; Galassi et al., 2021).
Historically, a broad spectrum of cell surface markers, including
PROM1 and CD24, have been extensively used to identify CSCs,
although the consensus has not been reached. Whereas tumor
heterogeneity in CCA is a widely accepted phenomenon
evidenced by scRNA-seq data, CSC heterogeneity in CCA has
not been previously described.

The YAP/AKT CCA murine model is recognized as one of the
most important preclinical models for hepatic stem-like CCA
(Wang et al., 2018; Martin-Serrano et al., 2022). These mice
develop tumors through a stepwise process (Zhang et al., 2017;
Wang et al., 2018) andmimics the pathological procession of human
CCA patients (Zhang et al., 2017), which validates the use of the
YAP/AKTmouse model to study CCA in vivo. Moreover, this model
serves as a valuable tool to study the characteristics of CSCs of CCA
and their interactions with surrounding stromal/immune cells
during tumorigenesis.

Here, we provide transcriptome analysis of 47,806 single cells,
including hepatocytes, and epithelial and stromal cells from normal
liver control and the other two different tumor progression
timepoints of the YAP/AKT CCA mouse model.

2 Materials and methods

2.1 YAP/AKT CCA mouse model

In brief, a YAP/AKT CCA mouse model was established
following the previous reports through hydrodynamically
administered tail vein injections with 30 µg of YAP, 20 µg of
AKT, and 2 µg of HSB2 plasmids (Li et al., 2015; Yamamoto

et al., 2017; Zhang et al., 2021). The empty vectors with
HSB2 were injected and used as controls for corresponding
timepoints (e.g., Ctrl-W05 and Ctrl-W08). Normal liver samples
were used as the baseline control (Ctrl, week 0). The presence of
CCA and the extent of tissue infiltration were confirmed by an
experienced murine histopathologist. All animals received humane
care, and animal experiments were approved and conducted
following the institutional guidelines and approved by the
Animal Care and Use Committee of the NIH, Bethesda,
Maryland, United States.

2.2 Library preparation and sequencing for
mouse sample

Tissue samples were processed as single-cell suspensions (details
are provided in Supplementary Methods S1). Single-cell sequencing
was performed using the 10x Genomics Single Cell 3′v3.1 Reagent
Kit according to the manufacturer’s instructions. Cell suspensions
were assessed and counted by staining with acridine orange and
propidium iodide fluorescence dyes on an automated cell counter
(LunaFL, Logos Biosystems), and adjusted for single-cell
partitioning to target approximately 6,000 datapoints per sample
when possible. For single-cell library preparation, as defined in the
10x Genomics user guide, following cell partitioning with barcoded
gel beads, the cells are lysed, and poly-adenylated transcripts are
reverse-transcribed with the inclusion of a cell-specific barcode and
a unique molecular identifier. Droplets are broken and barcoded
cDNA is amplified for 14 cycles [amplification by a low number of
cycles reduced the presence of heteroduplexes in the final PCR
product (Thompson et al., 2002)] before Illumina-based sequencing
libraries are prepared by fragmenting cDNA and adding necessary
sequencing adapters along with a sample-specific index barcode. For
sample preparation on the 10x Genomics platform, the Chromium
Next GEM Single-Cell 3′ Kit v3.1 (PN-1000268), Chromium Next
GEM Chip G Kit (PN-1000120), and Dual Index Kit TT Set A (PN-
1000215) were used. The molarity of each library was calculated
based on concentration and library size measured using a
bioanalyzer (Agilent Technologies). Libraries were pooled and
normalized to a final loading concentration. The sequencing run
was setup as recommended with 28 cycles +10 cycles +10 cycles
+90 cycles. Demultiplexing was performed using cellranger
“mkfastq,” which allows for one mismatch in the sample index
barcodes, and reads were aligned to a mm10 reference genome
(refdata-gex-mm10-2020A) to generate a per-cell gene expression
counts matrix with cellranger “count” (cellranger v6, 10x
Genomics). A per-cell mean sequencing depth of 50,000 reads/
cell was targeted for each sample. Libraries were sequenced on an
Illumina NextSeq 2000 at the CCR Single-Cell Analysis Facility
at NIH.

2.3 Cell lines and cell culture reagents

The human intrahepatic CCA cell lines HuCC-T1 and SNU-
1079 were used for this study. Cells were cultured in RPMI1640-
GlutaMAX™-I medium (Gibco, Grand Island, NY) supplemented
with 10% FBS.
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2.4 Tissue collection from the YAP/AKT CCA
mouse model

All liver/tumor tissues were harvested at indicated timepoints,
and the samples were minced into small pieces (n = 3/each
timepoint). Sample pieces were processed using a tumor
dissociation kit (Miltenyi Biotech # 130-095-929), following the
manufacturer’s instructions. The cell suspension was subsequently
filtered and counted to determine the concentration of live cells
before being submitted for sequencing. In between, the samples were
treated with Red Blood Cell Lysis Solution (Miltentyi # 130-094-183)
and Debris Removal Solution (Miltenyi Biotec 130-109-398). The
cells were maintained on ice during the isolation process.

2.5 Murine CCA scRNA-seq data analysis

Filtered feature-barcode matrix.h5 files from cellranger
output for Ctrl, W05, and W08 samples were merged into a
Seurat object through the Seurat workflow system (Satija et al.,
2015). The sequencing data were preprocessed according to
unique molecular identifier (UMI) counts, number of
expressed genes, and mitochondrial content. Cells with low
UMI counts (<500) or low complexity (<0.8 genes/UMI) were
filtered from the subsequent analysis. Cells with gene or
mitochondrial content exceeding three absolute deviations
above the respective medians were filtered as well. The gene
expression data were then normalized using the Seurat
SCTransform function (Satija et al., 2015). Downstream
analyses involving differential gene expression (DEG) and gene
set variation analyses (GSVA) were performed within the NIH
Integrated Analysis Portal (NIDAP) using R programs developed
on the Palantir Foundry platform (Palantir Technologies).
Analyses involving cell communication (CellChat and
CellphoneDB), copy number variation (inferCNV),
transcriptional factors and regulons (SCENIC), weighted gene
correlation network (WGCNA), and stemness and pseudotime
(CellTree and TSCAN) were performed on RStudio with custom
code (will be submitted onto GitHub Pages). All scRNA-seq data
were submitted to the Gene Expression Omnibus (GEO) public
database at NCBI (GEO link pending). Publicly available scRNA-
seq data from KRAS/p19 and YAP/AKT mouse models
(GSE154170) (Affo et al., 2021) were used to verify the
presence of Tm4sf1high CSCs in other studies.

2.6 Determination of major cell types and
their subpopulations

Highly variable genes were summarized by principal component
analysis (PCA). The number of principal components used was
determined using the elbow method, and the top 30 principal
components were further projected (Becht et al., 2018). The
Seurat FindClusters function was used for unsupervised
clustering analysis (Satija et al., 2015). For each individual cell
type, the average expression of previously published cell markers
(Zhang et al., 2020/11) was calculated using the Seurat
AddModuleScore function, and cells were classified based on the

marker set with the highest average. Copy number variation (CNV)
across epithelial cells was used to differentiate malignant cells
determined using inferCNV (Chen et al., 2022/10), as we
reported recently (Golino et al., 2023).

2.7 Differential expression analysis and gene
set variation analysis (GSVA)

Differential gene expression analysis was performed on log-
normalized data using the MAST algorithm (Finak et al., 2015) and
through the Seurat “FindMarkers” function (Satija et al., 2015). Gene
counts from malignant cells, cholangiocytes, and hepatocytes were
aggregated prior to GSVA using the GSVA (version 1.47.0) R
package. Pathways corresponding to significant gene sets were
referenced from the C5:GO, CP:KEGG, and CP:REACTOME
collections within the Molecular Signatures Database (MSigDB)
(v2022.1.Mm). Pathways describing similar biological functions
were omitted from visualization.

2.8 Cell identification

For each individual cell, the average expression of previously
published stromal and immune cell markers (Zhang et al., 2020/11)
was calculated using the Seurat AddModuleScore function. Cells
were then classified according to the marker set with the highest
average. Copy number variation (CNV) across epithelial cells was
determined using inferCNV (Chen et al., 2022/10). Endothelial,
fibroblast, and immune cells were pooled to form a reference dataset
for inferCNV. A cutoff of 0.1 was used to filter cells having low gene
counts, and an sd_amplifier value of 1.5 was used to filter
background noise. A copy number score (CNS) was assigned for
each cell through the following formula:

CNS � Σ CNVgene −mean CNV( )( )
2
.

Epithelial cells with a CNS in the top 25 percentile were further
classified as malignant cells. The remaining epithelial cells were
classified as cholangiocytes.

2.9 Cell differentiation analysis

The CellTree algorithm (version 3.16) (duVerle et al., 2016) was
used to calculate a set of topic scores (measure of differentiation
state) for each cell in the malignant, cholangiocyte, and hepatocyte
populations. A set probability score was also calculated for each cell;
this measure describes the likelihood of a cell having a particular
topic score. The topic score with the highest probability was then
assigned to each cell. Early-state malignant cells were labeled as
those with topic scores below or equal to three. Early-state
cholangiocytes and hepatocytes were labeled as those with topic
scores below or equal to four. We also used CytoTRACE to define
the differential or stemness status of human malignant cells from a
previous study (Gulati et al., 2020). Cells were assigned a score to
annotate differential/stemness status, with a higher score indicating
higher stemness/characteristics.
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2.10 Network analysis

We inferred gene regulatory networks using the SCENIC
package (version 1.2.4) implemented in R (Aibar et al., 2017).
The gene regulatory networks are inferred based on co-
expression modules and TF motif enrichment analysis from
scRNA-seq data. We calculated and ranked the activities of TFs,
as measured by the regulon specificity score (RSS), using the AUCell
package (version 3.12) (Suo et al., 2018). We also used the single-cell
weighted gene co-expression network analysis (scWGCNA) R
package (Langfelder and Horvath, 2008) to determine modules of
co-expressed genes for malignant cell clusters. Clustering of genes
was performed based on five k-nearest neighbors. A soft power of
18 was used to construct the co-expression network.

2.11 Pseudotime analysis

Pseudotime analysis was performed on malignant cell clusters
using the Tools for Single-Cell ANaylsis (TSCAN) R package
(version 1.32.0). Differentiation trajectory was drawn on Seurat
PCA embeddings through modified exprmclust and plotmclust
functions. An expression matrix containing the top 2,000 variable
genes was used to infer genes controlling the direction of
differentiation. The set of genes controlling the direction of
differentiation was extracted through the TSCANorder and
DIFFTEST functions. Genes having a q-value >0.05 were filtered
from the list.

2.12 Cell–cell communication

Differential crosstalk and communication between stromal and
immune cells across timepoints were analyzed using CellChat
(version 1.1.3), as outlined by the procedure proposed by Jin
et al. (2021). The default CellChat integrated database was used
as the reference for inferring interaction signals. Cell
communication groups containing fewer than 10 cells were
filtered from the data. We used CellphoneDB (Efremova et al.,
2020) to study the ligand–receptor interactions of early-state/late-
state malignant cells with immune and stromal (endothelial and
fibroblast) cells. Interaction pairs with a p-value <0.05 were
considered significant.

2.13 Spheroid formation assay

The single-cell suspension of CCA cells was cultured in 6-well
ultralow attachment plates (Corning Inc., New York, NY) at a
density of 1,000 cells/well in a spheroid medium. The spheroid
medium was prepared with DMEM/F12 medium supplemented
with 1X B27 supplement (Gibco, Carlsbad, CA), human
recombinant epidermal growth factor (hrEGF) (Gibco, Carlsbad,
CA) (20 ng/mL), and bFGF (Gibco, Carlsbad, CA) (10 ng/mL). After
incubating for 7 days, the number of spheroids was counted. The
spheroid formation rate was assessed as the ratio of the number of
spheroids/the number of cells cultured. Each group included
triplicate wells.

2.14 Flow cytometry

Flow cytometry was used to detect cell populations with specific
CSC surface markers. In brief, cultured cells were dissociated to
single-cell suspension and washed with cold PBS two times before
incubation with different antibodies for 30 min at 4°C. Cells were
washed once more before performing flow cytometry analysis. The
following antibodies were used for detecting stem cell markers by
flow cytometry analysis: anti-CD24-PB human (BioLegend, San
Diego, CA), anti-CD90-PE/Cy5 human (BioLegend, San Diego,
CA), anti-CD133/2-APC human (Miltenyi Biotec, Milan, Italy),
anti-LGR5-PE human (BioLegend, San Diego, CA), anti-CD44-
PE/Cyanine7 human (BioLegend, San Diego, CA), anti-EpCAM-
FITC human (Miltenyi Biotec, Milan, Italy), and anti-DCAMKL1-
Alexa Fluor® 488 (Abcam, Cambridge, MA). All abovementioned
stained cells were then examined by using the CytoFLEX LX
platform, and results were analyzed using FlowJo software
version 10.4.2 (TreeStar Inc.).

2.15 RNA extraction and quantitative real-
time (qRT)-PCR

Total RNA from cultured cells was extracted by using an RNeasy
Mini Kit (Qiagen) according to the manufacturer’s instructions.
cDNA was synthesized from 1 μg of total RNA by the Superscript III
First-Strand Synthesis System (Invitrogen). cDNA samples were
subjected to qRT-PCR amplification using custom primers on a Bio-
Rad MyIQ detection system (Bio-Rad) according to the protocol
provided by the manufacturer. Quantitative RT-PCR custom
primers are described in Supplementary Table S6. GAPDH
served as an internal standard.

2.16 Survival analysis and enrichment
analysis

The survival analysis was performed on KMplot (http://kmplot.
com/analysis/index.php?p=service&cancer=liver) (Nagy et al.,
2018). We supplied multiple gene names to the KMplot by using
the “use mean expression of selected genes” option. The enrichment
analysis was performed on MsigDB (https://www.gsea-msigdb.org/
gsea/msigdb) with default parameters (Liberzon et al., 2011). The
gene expression profile of liver cancer patients was downloaded
from the TCGA (https://portal.gdc.cancer.gov/) and ICGC (https://
dcc.icgc.org/) websites. Raw read counts were extracted from files
with the suffix “htseq.counts.” The trimmed mean of M-values
(TMM) normalized expression value was generated by the
“edgeR” package (Robinson et al., 2010). The clinical information
was also downloaded from the TCGA and ICGC websites.

2.17 Statistics analysis

All statistical analyses were performed using R (version 4.1.0,
http://www.rproject.org) or GraphPad Prism (version 7.04). The
differences between groups were analyzed by the chi-squared test,
Student’s t-test, Wilcoxon test, Pearson correlation test, and
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Kruskal–Wallis test, when appropriate. All tests were two-sided, and
a p-value < 0.05 was considered statistically significant.

3 Results

3.1 Single-cell transcriptome characterizes
heterogeneous malignant cells in YAP/AKT
mouse CCA

We obtained single-cell transcriptomics from normal control
(week 0, Ctrl), W05 and Ctrl-W05, and W08 and Ctrl-W08 livers or
tumors of the YAP/AKT mouse model (Figure 1A). H&E staining
from W05 (week 5) samples showed atypical epithelial/ductular
proliferation, indicating the initiation stage of cancer, whereas W08
(week 8) samples showed carcinoma formation (Figure 1A,
Supplementary Figure S1). Therefore, W05 samples were
denotated as being in the early stage of CCA and W08 samples
were denotated as being in the late stage of CCA. Overall
transcriptomic patterns overlapped among the samples from
normal livers (Ctrl), Ctrl-W05, and Ctrl-W08, indicated in the
PCA plot (Supplementary Figure S2). Therefore, a total of
47,806 single cells were extracted from murine livers or tumors
derived from Ctrl, W05, and W08 samples for subsequent analysis.

A total of 16 distinct cell clusters were identified (Figures 1B–D). The
cells comprised mainly of clusters of endothelial cells, hepatocytes,
epithelial cells, immune cells, and fibroblasts based on the expression
of known markers (Figure 1D, Supplementary Figure S3). As
expected, the epithelial cells were composed of malignant cells
and cholangiocytes, which is consistent with the cellular
characteristics of the liver (Zhang et al., 2020/11; Massalha et al.,
2020; Ma et al., 2019). The immune cells comprised CD4 cells,
CD8 cells, regulatory T cells (Tregs), NK cells, B cells, and myeloid
cells, which included dendritic cells, TAM1 and TAM2 (Figures
1B–D). Next, we further analyzed epithelial cells, especially
malignant cells, from the epithelial cell cluster. The malignant
epithelial cells were clustered into three separate subsets (Tum1,
Tum2, and Tum3) (Figure 2A). Notably, the proportion of the
subset of Tum2 expanded in the late carcinoma of W08 (Figure 2B).

In terms of malignant cell composition, Tum1, Tum2, and
Tum3 contained 89%, 1%, and 10% of W05 cells, respectively,
and 46%, 33%, and 21% of W08 cells, respectively. The clusters
were distinctively separate from each other, characterized by a
unique transcriptional profile of cells. Functional enrichment
analysis revealed that differentially expressed genes
(Supplementary Figure S4, Supplementary Table S1) across the
three subclusters corresponded to various important pathways.
For instance, Tum1 cells were enriched with pathways associated

FIGURE 1
Single-cell analysis of liver and cholangiocarcinoma from YAP/AKT mice. (A) A schematic diagram highlighting the workflow including isolation and
sequencing of single cells for this study. Single cells were prepared from the liver tissues/tumors of YAP/AKT CCAmice at control (baseline) and different
tumor progression timepoints, including week 5 (W05) and week 8 (W08). The transcriptome of single cells was sequenced using the 10x Chromium
system. (B) The UMAP plot of 47,806 single cells to visualize cell-type clusters based on the expression of known markers (left panel) and isolated
cells at indicated tumor progression stages, including control, week 5, and week 8. (C) Cell counts and markers used to annotate the known cell types,
including epithelial cells, hepatocytes, immune cells, endothelial cells, and fibroblasts, from the liver tissue/tumors from YAP/AKT CCA mice. (D) The
individual gene UMAP plots showing the expression levels and distribution of representative markers of known cell types, which distinctly separates
epithelial cells, hepatocytes, immune cells, endothelial cells, and fibroblasts from the liver tissue/tumors from YAP/AKT CCA mice.
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with epithelial cell development and differentiation, ion
transmembrane transport, peptidase regulator activity, and lipid
metabolic processes. Tum2 cells were enriched with pathways
concerning the metabolic processing of glutathione, peptide, and
amide and oxidation reduction process, whereas Tum3 cells were
enriched with pathways associated with the phospholipid
metabolism (Figure 2C).

To gain a more detailed view of the changes in gene expression
patterns among the subset of malignant cells, we performed
weighted gene correlation network analysis (WCGNA)
(Langfelder and Horvath, 2008) on the malignant cell clusters.
We identified panels of specific signatures correlating with the
subsets of malignant cells during CCA progression. The
expression of the genes in module 1 gradually decreased from
left to right, whereas the expression of genes in module
3 increased from left to right (Figure 2D, Supplementary Table
S2). There was a significant relationship between the gene matrix of

these two modules and the clinical outcome of CCA patients (ICGC
cohort). Notably, patients with either of two of these highly
expressed gene signatures (modules 1 and 3) showed worse
prognosis, suggesting potential predictive values of these gene
signatures (Figure 2E). Among these genes, we identified several
factors that were related to tumor progression and were found to be
consistent with previously reported, for example, CAT (Loilome
et al., 2012), ATP1B1 (Singhi et al., 2020), CCND1 (Zhao et al.,
2008), and CXCL12 (Miyata et al., 2019) (Supplementary Figure S5).
By utilizing the l2p R package, we can map genes in the individual
module to key functional pathways, notably cellular differentiation
and development in module 1, whereas genes in the Tum3 module
play pivotal roles in VEGF-mediated vascular endothelial growth,
which is evidenced by the presence of genes such as FLT1, FLT4,
KDR, NOTCH1, NRP2, NRP1, and ENG. Genes within the
Tum2 module are predominantly ribosomal in nature and align
closely with pathways associated with protein translation.

FIGURE 2
(Continued).
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3.2 Single-cell transcriptome characterizes
stemness and heterogeneity of CSCs in YAP/
AKT mouse CCA

Next, we focused on the dynamic changes that occurred within
malignant cells during the progression of CCA. To this end, we
performed pseudotime analysis on malignant cells obtained from
weeks 5 and 8 (Figure 3A). The genes used to construct the
pseudotime trajectory are listed in Supplementary Table S3.
There is a correlation between cluster membership and
pseudotime state, with most cells from Tum1 being positioned at
the start of the trajectory, whereas cells from Tum3 were positioned
at the end of the trajectory. Moreover, cells from Tum2 were located
between the start and end points of the trajectory plot (Figure 3A),
suggesting that these cells were an intermediary population of
malignant cells during CCA progression. The expression of Sox9,
which is one of the critical TFs that control the fate of CSCs, also
decreases toward the later pseudotime states (Figure 3B). These
results suggest a transition in malignant cell differentiation over

time, as indicated by the trend where more W08 cells were found in
Tum2 and Tum3 than in Tum1 (Figure 2B).

We used SCENIC (Yamamoto et al., 2017) to investigate the
expression of transcriptional regulons across the different
malignant cell subclusters. Among transcriptional regulators,
we found a significant number of high-confidence regulons
that were distinctively expressed across all three subclusters,
such as Foxa3, Klf5, Tead1, Gata6, Sox9 in Tum1; Pml and
Hdac3 in Tum2; and Klf12, Cebpb, Stat3, Nfkb2, and Irf9 in
Tum3. These distinct regulon sets suggest a potential role in
determining malignant cell heterogeneity (Figure 3C).
Furthermore, the proliferation activity was different across the
three malignant cell subclusters, with Tum1 having the lowest
MKi67 expression and Tum3 having the highest
Mki67 expression (Figure 3D). We used a list of previously
published CSC-related genes (Supplementary Table S4), such
as Sox9, Aldh3a2, Cd24a, Prom1, and Cd44a, as a spike-in for
GSVA. We calculated the enrichment score of cancer stemness in
each malignant cell cluster using the GSVA and found a

FIGURE 2
(Continued). Dynamic intratumoral malignant cell heterogeneity in the CCA of YAP/AKTmice. (A) The PCA plot of 379malignant epithelial cells from
YAP/AKT mice colored by cluster (left panel) and timepoint (right panel). (B) The proportion of malignant cell subclusters in different timepoints of tumor
progression. (C) Function enrichment analysis for differentially expressed genes between subclusters of malignant cells in (A). (D)Heatmap of expression
profile of signature genes in indicated modules identified by WGCNA (weighted gene co-expression network analysis). A summary list of genes
associated with the corresponding WGCNA module is shown in Supplementary Table S2. (E) The corresponding Kaplan–Meier overall survival curves of
patients were grouped by the gene signatures in WGCNA modules (D) based on the ICGC cohort.
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significantly higher stemness signature in Tum1 than in the other
clusters (Figure 3E, Supplementary Figure S6A), indicating that
Tum1 is a group of malignant cells with stem-like features.

CCA heterogeneity has been well illuminated (Ho et al., 2019;
Ma et al., 2019), but the heterogeneity of CCA CSCs remains
unclear. To reveal the heterogeneity of CSCs, stem-like cell
cluster Tum1 was re-clustered into three subclusters, indicating
the heterogeneity of CSCs (Supplementary Figure S6B). We
explored the potential regulation mechanism with SCENIC,
which showed distinguished transcriptional regulons of these
three subclusters of CSCs, suggesting that these regulons may be
drivers of the heterogeneity of CSCs (Supplementary Figure S6C).

In summary, our data revealed both the similarities and
dissimilarities in gene expression patterns among different
malignant cell clusters. We also defined the Tum1 cell population
with the features associated with CSCs of CCA, including
characteristics of relative quiescence and a high stemness score
with specific TF expression patterns. Nevertheless, our data
suggest heterogeneity of the CSC population.

3.3 Tm4sf1+ malignant cells are highly
tumorigenic cells during CCA development

As stated earlier, cluster Tum1 was a group of malignant cells
with stem-like features. Among the differentially expressed genes
between Tum1 and Tum2/3, Tm4sf1 is a cell membrane protein that
was recently considered as a new marker of CSCs in breast cancer,
lung cancer, and melanoma (Hong et al., 2022), and is expressed
relatively higher in Tum1 (Figure 4A, Supplementary Table S1).
Using the other two publicly available scRNA-seq datasets,

including one mouse sample from the YAP/AKT CCA mouse
model and the other mouse from the KRAS/p19 CCA model, we
found similar three clusters, with one of them having the highest
stemness score and a relatively higher expression of Tm4sf1
(Supplementary Figure S7). Correspondingly, we found that the
expression of the TM4SF1 gene is positively correlated with well-
known CSC markers PROM1 and SOX9 based on bulk RNA
sequence data from the TCGA human CCA cohort (Figure 4B).
Interestingly, patients with a high expression of TM4SF1 in liver
tumor samples had worse overall survival (Figure 4C). In addition,
scRNA-seq analysis of human iCCA samples confirmed this positive
correlation of TM4SF1 expression with stemness scores assigned by
the CytoTRACE (Becht et al., 2018; Affo et al., 2021) (Cellular (Cyto)
Trajectory Reconstruction Analysis using gene Counts and
Expression) score (Figure 4D). These findings demonstrate the
strong correlation among TM4SF1 expression, cancer stemness,
and clinical outcome. Moreover, TM4SF1 expression levels and
positivity were different between two human CCA cell lines
(Supplementary Figure S8A). Importantly, CSC markers CD24,
PROM1, and SOX9 were much higher in TM4SF1high cells of
CCA cell lines, including HuCC-T1 and SNU1079 cells, than in
TM4SF1low cells (Supplementary Figure S8B). TM4SF1high CCA cells
formed more tumor spheroids than TM4SF1low cells (Figure 4E).
Nevertheless, the serial limiting dilution transplantation assay
showed that TM4SF1high generated significantly more tumors in
nude mice (Figure 4F) and had a shorter latency period than
TM4SF1low cells. Taken together, the abovementioned data
suggest that TM4SF1 could be a new cell membrane marker of
CSCs of CCA. These analyses underline the clinical significance of
TM4SF1high cells for CCA, indicating that TM4SF1high cells may play
a critical role in CCA tumorigenesis.

FIGURE 3
Characterization of the CSC cluster in CCAmalignant cells of YAP/AKTmice. (A) Pseudotime trajectory analysis of the three subclusters ofmalignant
cells annotated by subclusters of malignant cells. (B) The trend of Sox9 expression along the pseudotime trajectory of the three subclusters of malignant
cells. (C) A heatmap of regulon scores from the SCENIC (single-cell regulatory network inference and clustering) analysis. Rows, individual regulons.
Columns, cells organized according to re-clustering ofmalignant cells. (D) Violin-plot showing the relativeMKi67 expression between subclusters of
malignant cells. (E) Bar-plot showing the average GSVA stemness score for each malignant cell cluster.
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3.4 Dynamic changes of stromal cells and
interaction in high/low stemness malignant
cells during tumor progression

To explore the dynamic changes of the stromal cells during tumor
progression, we first evaluate the dynamic changes of stromal cells
that occurred during tumor progression in YAP/AKT CCA mice. By
re-clustering the stromal cells, we obtained 10 cell clusters (Figure 1B
and Figure 5A), which comprised T cells, B cells, myeloid cells,
fibroblasts, and endothelial cells. There was a dynamic change in
the proportion of stromal cell populations as the tumor progressed
(Figure 5B). Among immune cells, the proportion of B cells decreased
at W05 but remained constant by W08, which may reflect a response
to plasmid exposure rather than changes due to tumor progression.
The proportion of pro-tumoral TAM2 gradually increased with tumor
progression, whereas the proportion of antitumoral TAM1 remained
at similar levels from W0 to W05 but dramatically increased by W08
(Figure 5B). We used Cellchat (version 1.1.3)29 to further study the
interactions between cell populations during CCA progression in
YAP/AKT mice. Through signal strength plots and cellular
communication networks, we noticed a shift in the crosstalk across
timepoints. At the baseline, endothelial cells, fibroblasts, and
cholangiocytes have the strongest outgoing interaction signals
(Figure 5C), such as Kit and Pecam from endothelial cells and
Spp1 and Alcam from cholangiocytes (Supplementary Figure S9A).

At W05, the outgoing signals from fibroblasts and cholangiocytes
became attenuated, whereas signals from malignant cells became the
strongest. Finally, at W08, there was a rebound in fibroblast outgoing
signaling. This shift from cholangiocytes to malignant cell crosstalk
appears to be toward fibroblast crosstalk and increases not only in
strength but also in the number of interactions (Figure 5D).
Interestingly, throughout all three timepoints, CD8 T cells had the
persistently strongest incoming interaction signal (Figure 5C,
Supplementary Figure S9B). Overall, the number and intensity of
cell–cell interactions in theW08 CCA samples were higher than those
in theW05 CCA samples (Figure 5D), suggesting evolving complexity
of the interaction during tumor progression. With CellPhoneDB
analysis, we found that the high stemness malignant cell cluster
(malignant-early) had differential interactions with stromal cells in
comparison to that of the low stemness malignant cell cluster
(malignant-late) during the CCA progression (Figure 5E). For
example, there were strong interactions between the high stemness
malignant cell population and fibroblasts through the ligand:receptor
interaction of PDGFb:PDGFR. However, this interaction was less
prominent for the low stemness malignant population and replaced
with DPP4:CCL11 and DPP4:CXCL12 pairings. Although the
interaction between T cells and high/low stemness malignant cells
did not significantly change, we noted differences of the interaction
betweenmyeloid cells and high/low stemness malignant cells.We also
observed differential interactions between the endothelial cells and

FIGURE 4
TM4SF1 is a potential marker for the CSC cluster in CCA malignant cells. (A) Bar-plot showing the relative Tm4sf1 expression level between
subclusters of malignant cells. (B) Association of TM4SF1 expression with the expression of CSCmarkers PROM1 (left panel) and SOX9 (right panel) in the
CCA cohort. Scatterplots were generated using the Tumor IMmune Estimation Resource (TIMER) web tool (https://cistrome.shinyapps.io/timer/) to
identify the expressions of PROM1 and SOX9 that are associated with TM4SF1 expression in the CCA cohort of the TCGA database. (C) Kaplan–Meier
survival curves of the overall survival of the liver cancer cohort from the Human Protein Atlas datasets for TM4SF1 gene expression stratified by high (red)
or low (green) expression levels. (D) tSNE showed TM4SF1 expression of human iCCA scRNA-seq data (GSE138709) and correlation with CytoTRACE
score (R = 0.33). (E) Representative images of spheroids fromHuCC-T1 and SNU1079 CCA cell lines. The bar graph shows the spheroid-forming capacity
of TM4SF1+ cells determined by tumor spheroid assays (1,000 cells/well). *p < 0.05. The cell suspension was cultured in DMEM/F12 medium
supplemented with 1X B27 supplement, hrEGF (20 ng/mL), and bFGF (10 ng/mL) for 7 days. The number of spheroids was counted. (F) Tumor-initiating
capacity test from TM4SF1high HuCC-T1 cells. The upper panel shows tumor image from 1 × 103 TM4SF1high and TM4SF1low cells. The lower table shows
the tumor formation numbers from three different diluted cell numbers.
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high stemness malignant cells versus low stemness malignant cells,
such as TEK:ANGPT1 versus MERTK:GAS6, respectively.

4 Discussion

To our knowledge, this is the first study to define the Tm4sf1high

malignant cells as CSCs in CCA.We also presented the data showing
dynamic changes in cell composition of different cells and dynamic
interaction among CSCs, stromal cells, and immune cells during
CCA tumorigenesis in the YAP/AKT mouse model.

The traditional method to identify CSCs from CCA focuses on
sorting by FACS based on cell-surface markers, but derived CSCs are
usually a mixture of CSC populations (McGrath et al., 2020). Using the

YAP/AKT CCA mouse model and high-resolution scRNA-seq, we
revealed that malignant cells display transcriptomic heterogeneity.
Functional analysis demonstrated that malignant cell subclusters
were enriched with unique functions, including those related to
metabolic processes, stemness, and immune response, which may
reflect the functional heterogeneity among malignant cells during
tumor progression. We identified a subset of malignant cells with
stemness features and metabolic functions along tumor progression.
These functions were uniquely enriched in this subpopulation and
reflect distinct requirements for CSCs. It will be helpful to gain further
insight regarding functional requirements for stemness maintenance of
CSCs in CCA. In this study, we demonstrated that TM4SF1 is a novel
cell surface marker of CSCs in CCA, which may be one of the potential
targets for CCA treatment. Although we used a similar YAP/AKT

FIGURE 5
(Continued).
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model as previously reported (Affo et al., 2021), the data generated
different impressions in terms of Tm4sf1 in high stemness cell
population, which may be explained by the different sampling
timing and scRNA-seq process. Indeed, efforts have been taken to
develop agents to block TM4SF1 (Chen et al., 2022/10; Visintin et al.,
2015). Our data indicated the proportion of CSCs with Tm4sf1high

reduced at week 8 in comparison to week 5. It is unclear whether CSCs
are enriched gradually from the time of tumor initiation to the stage of
tumor metastasis or along with tumor size/number increases in CCA,
which needs to be explored with increasing timepoints of this specific
CCA model and other models.

Previous evidence has showed that CSCs contribute to the
education and reconstitution of the immune microenvironment in
CCA (Raggi et al., 2017; Zeng et al., 2018). Conversely, others have
demonstrated that the immune microenvironment promotes the
generation and maintenance of CSCs (Raggi et al., 2015). However,
this bi-directional communication is dynamically changed. Here, we
revealed these dynamic changes within CSC populations, as well as the
interaction with surrounding stromal cells. For example, the
CXCL12–DPP4 interaction between fibroblasts and tumors and the
role of the PDGFR pathway on CCA tumorigenesis have been
elaborated (Affo et al., 2021). Our data suggest that this interaction
is dynamic rather than static. In addition, the proportion of immune
cell types T, B, NK cells, and macrophages changed as the tumor
progressed, which likely suggests that these cells aid in the survival of
CSCs and propagate tumorigenesis.

We noticed a low yield of the malignant cell population
in our study, which may be related to the cell loading limitation of
the scRNAseq platform without specific enrichment for epithelial
cells. Our findings provide insight into the cellular heterogeneity
of CCA at the different developmental timepoints, which facilitates a
deeper understanding of CCA pathogenesis. Furthermore, our
findings on the crosstalk between CSCs and stromal cells provide
potential strategies for the exploration of combining immunotherapy
and CSC-targeted therapies for precision medicine. Confirmatory
in vitro and in vivo experiments will help elucidate the underlying
biological mechanisms and are ongoing.

In conclusion, our scRNA-seq analysis of tumor progression
over time in the YAP/AKT CCA mouse model identified
Tm4sf1high malignant cells as potential CSCs and observed
dynamic TME during CCA tumorigenesis. These findings
provide important insights into CCA tumorigenesis mechanisms,
which can aid in the development of effective therapeutic strategies
with immunotherapy and beyond.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found at https://www.ncbi.nlm.nih.gov/geo/,
GSE233623.

FIGURE 5
(Continued). Dynamic change of interaction of cancer stem-like cells with stromal cells during CCA development. (A) UMAP plot of immune cells
was grouped into 10 cell subtypes and indicated by color (left panel) and timepoints (right panel). (B) Sankey plot showing dynamic changes in the
proportion of stromal cells along with tumor progression in YAP/AKT CCA mice. (C) Scatterplot of incoming and outgoing interaction strengths of each
cell population at the baseline (Ctrl) and change of strength between control and different timepoints (W05 and W08). Ctrl, control; W05, week 5;
W08, week 8. (D) Circle plot displaying putative ligand–receptor interaction between different cell types, with the width of edges representing the
numbers of the communication. The edge colors are consistent with the signal sender. A thicker edge line indicates a stronger signal. (E) Bubble plot of
the communication probability of all the significant ligand–receptor pairs that contributed to interaction between malignant cells and various stromal
cells. The dot color and size represent the communication probability and p-values. p-values were computed from the one-sided permutation test.
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