25 research outputs found

    Pathophysiological regulation of lung function by the free fatty acid receptor FFA4.

    Full text link
    Increased prevalence of inflammatory airway diseases including asthma and chronic obstructive pulmonary disease (COPD) together with inadequate disease control by current frontline treatments means that there is a need to define therapeutic targets for these conditions. Here, we investigate a member of the G protein-coupled receptor family, FFA4, that responds to free circulating fatty acids including dietary omega-3 fatty acids found in fish oils. We show that FFA4, although usually associated with metabolic responses linked with food intake, is expressed in the lung where it is coupled to Gq/11 signaling. Activation of FFA4 by drug-like agonists produced relaxation of murine airway smooth muscle mediated at least in part by the release of the prostaglandin E2 (PGE2) that subsequently acts on EP2 prostanoid receptors. In normal mice, activation of FFA4 resulted in a decrease in lung resistance. In acute and chronic ozone models of pollution-mediated inflammation and house dust mite and cigarette smoke-induced inflammatory disease, FFA4 agonists acted to reduce airway resistance, a response that was absent in mice lacking expression of FFA4. The expression profile of FFA4 in human lung was similar to that observed in mice, and the response to FFA4/FFA1 agonists similarly mediated human airway smooth muscle relaxation ex vivo. Our study provides evidence that pharmacological targeting of lung FFA4, and possibly combined activation of FFA4 and FFA1, has in vivo efficacy and might have therapeutic value in the treatment of bronchoconstriction associated with inflammatory airway diseases such as asthma and COPD

    Magmatic and geotectonic significance of Santa Elena Peninsula, Costa Rica

    Get PDF
    We present a new integrated interpretation of the geochemistry and geotectonic significance of the Santa Elena Peninsula, which is divided in three units: 1) an overthrust allocthonous unit of ultramafic and mafic rocks, the Santa Elena Nappe; 2) an autochthonous basaltic sedimentary suite, resting immediately below the overthrust, the Santa Rosa Accretionary Complex; and 3) Islas Murciélago pillow and massive basaltic flows. In the Santa Elena Nappe three petrological affinities have been recognized: 1) the ultramafic complex, that corresponds to depleted (MORB-like) mantle serpentinizated peridotites, with very low TiO2 and high Ni and Cr; 2) the pegmatitic gabbros, layered gabbros and plagiogranites and basaltic dikes with low TiO2 (0.89%). These mafic associations have geochemical signatures that suggest an island arc origin and petrographic evidences of low grade metamorphism and hydrothermal alteration. The Santa Rosa Accretionary Complex includes pelagic and volcanoclastic sediments, tuffs and alkaline magmatic rocks, originated by low degree melting of enrichment OIB mantle source, and probably related with seamount portions incorporated into the accretionary prism. Islas Murciélago pillow and massive basalts show no clear structural relationship with the rest of the units, but are geochemically similar to the dolerites of the Santa Elena Nappe. Sr, Nd, and Pb isotopic ratios of the Santa Elena Nappe and the Santa Elena Accretionary Complex samples do not correspond to the Galapagos Mantle array, and have different mantle reservoirs and geochemical characteristics than the Nicoya Complex

    DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment

    Get PDF
    Increased airway smooth muscle mass, a feature of airway remodeling in asthma, is the strongest predictor of airflow limitation and contributes to asthma-associated morbidity and mortality. No current drug therapy for asthma is known to affect airway smooth muscle mass. Although there is increasing evidence that prostaglandin D2 type 2 receptor (DP2) is expressed in airway structural and inflammatory cells, few studies have addressed the expression and function of DP2 in airway smooth muscle cells. We report that the DP2 antagonist fevipiprant reduced airway smooth muscle mass in bronchial biopsies from patients with asthma who had participated in a previous randomized placebo-controlled trial. We developed a computational model to capture airway remodeling. Our model predicted that a reduction in airway eosinophilia alone was insufficient to explain the clinically observed decrease in airway smooth muscle mass without a concomitant reduction in the recruitment of airway smooth muscle cells or their precursors to airway smooth muscle bundles that comprise the airway smooth muscle layer. We experimentally confirmed that airway smooth muscle migration could be inhibited in vitro using DP2-specific antagonists in an airway smooth muscle cell culture model. Our analyses suggest that fevipiprant, through antagonism of DP2, reduced airway smooth muscle mass in patients with asthma by decreasing airway eosinophilia in concert with reduced recruitment of myofibroblasts and fibrocytes to the airway smooth muscle bundle. Fevipiprant may thus represent a potential therapy to ameliorate airway remodeling in asthma

    Orai/CRACM1 and KCa3.1 ion channels interact

    Get PDF
    open access articleBACKGROUND: Orai/CRACM1 ion channels provide the major Ca(2+) influx pathway for FcεRI-dependent human lung mast cell (HLMC) mediator release. The Ca(2+)-activated K(+) channel KCa3.1 modulates Ca(2+) influx and the secretory response through hyperpolarisation of the plasma membrane. We hypothesised that there is a close functional and spatiotemporal interaction between these Ca(2+)- and K(+)-selective channels. RESULTS: Activation of FcεRI-dependent HLMC KCa3.1 currents was dependent on the presence of extracellular Ca(2+), and attenuated in the presence of the selective Orai blocker GSK-7975A. Currents elicited by the KCa3.1 opener 1-EBIO were also attenuated by GSK-7975A. The Orai1 E106Q dominant-negative mutant ablated 1-EBIO and FcεRI-dependent KCa3.1 currents in HLMCs. Orai1 but not Orai2 was shown to co-immunoprecipitate with KCa3.1 when overexpressed in HEK293 cells, and Orai1 and KCa3.1 were seen to co-localise in the HEK293 plasma membrane using confocal microscopy. CONCLUSION: KCa3.1 activation in HLMCs is highly dependent on Ca(2+) influx through Orai1 channels, mediated via a close spatiotemporal interaction between the two channels

    Mechanisms of glucocorticoid action and insensitivity in airways disease

    Full text link
    © 2014 Elsevier Ltd. Glucocorticoids are the mainstay for the treatment of chronic inflammatory diseases including asthma and chronic obstructive pulmonary disease (COPD). However, it has been recognized that glucocorticoids do not work well in certain patient populations suggesting reduced sensitivity. The ultimate biologic responses to glucocorticoids are determined by not only the concentration of glucocorticoids but also the differences between individuals in glucocorticoid sensitivity, which is influenced by multiple factors. Studies are emerging to understand these mechanisms in detail, which would help in increasing glucocorticoid sensitivity in patients with chronic airways disease. This review aims to highlight both classical and emerging concepts of the anti-inflammatory mechanisms of glucocorticoids and also review some novel strategies to overcome steroid insensitivity in airways disease

    Protein phosphatase 5 mediates corticosteroid insensitivity in airway smooth muscle in patients with severe asthma.

    No full text
    BACKGROUND: The mechanisms driving glucocorticoid (GC) insensitivity in patients with severe asthma are still unknown. Recent evidence suggests the existence of GC-insensitive pathways in airway smooth muscle (ASM) caused by a defect in GC receptor (GRα) function. We examined whether other mechanisms could potentially explain the reduced sensitivity of ASM cells to GC in severe asthmatics. METHODS: Airway smooth muscle cells from healthy and severe asthmatic subjects were treated with TNF-α and responses to corticosteroids in both cohorts were compared by ELISA, immunoblot, immunohistochemistry and real-time PCR. Immunohistochemistry and flow cytometry assays were used to assess the expression of the protein phosphatase PP5 in endobronchial biopsies and ASM cells. RESULTS: The production of CCL11 and CCL5 by TNF-α was insensitive to both fluticasone and dexamethasone in ASM cells from severe asthmatic compared to that in healthy subjects. Fluticasone-induced GRα nuclear translocation, phosphorylation at serine 211 and expression of GC-induced leucine zipper (GILZ) were significantly reduced in ASM cells from severe asthmatics compared to responses in healthy subjects. Levels of PP5 were increased in ASM cells from severe asthmatics and PP5 knockdown using siRNA restored fluticasone repressive action on chemokine production and its ability to induce GRα nuclear translocation and GRE-dependent GILZ expression. In vivo PP5 expression was also increased in the ASM bundles in endobronchial biopsies in severe asthmatics. CONCLUSIONS: PP5-dependent impairment of GRα function represents a novel mechanism driving GC insensitivity in ASM in severe asthma

    Validation of antibodies for the specific detection of human TRPA1

    No full text
    The transient receptor potential cation channel family member ankyrin 1 (TRPA1) is a potential target for several diseases, but detection of human TRPA1 (hTRPA1) protein in cells and tissues is problematic as rigorous antibody validation is lacking. We expressed hTRPA1 in a TRPA1-negative cell line to evaluate 5 commercially available antibodies by western blotting, immunofluorescence, immunocytochemistry and flow cytometry. The three most cited anti-TRPA1 antibodies lacked sensitivity and/or specificity, but two mouse monoclonal anti-TRPA1 antibodies detected hTRPA1 specifically in the above assays. This enabled the development of a flow cytometry assay, which demonstrated strong expression of TRPA1 in human lung myofibroblasts, human airway smooth muscle cells but not lung mast cells. The most cited anti-TRPA1 antibodies lack sensitivity and/or specificity for hTRPA1. We have identified two anti-TRPA1 antibodies which detect hTRPA1 specifically. Previously published data regarding human TRPA1 protein expression may need revisiting

    CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma

    No full text
    Background: Patients with severe, uncontrolled asthma, particularly those with a non-eosinophilic phenotype, have a great unmet need for new treatments that act on a broad range of inflammatory pathways in the airway. Tezepelumab is a human monoclonal antibody that blocks the activity of thymic stromal lymphopoietin, an epithelial cytokine. In the PATHWAY phase 2b study (NCT02054130), tezepelumab reduced exacerbations by up to 71% in adults with severe, uncontrolled asthma, irrespective of baseline eosinophilic inflammatory status. This article reports the design and objectives of the phase 2 CASCADE study. Methods: CASCADE is an ongoing exploratory, phase 2, randomized, double-blind, placebo-controlled, parallel-group study aiming to assess the anti-inflammatory effects of tezepelumab 210 mg administered subcutaneously every 4 weeks for 28 weeks in adults aged 18–75 years with uncontrolled, moderate-to-severe asthma. The primary endpoint is the change from baseline to week 28 in airway submucosal inflammatory cells (eosinophils, neutrophils, T cells and mast cells) from bronchoscopic biopsies. Epithelial molecular phenotyping, comprising the three-gene-mean technique, will be used to assess participants’ type 2 (T2) status to enable evaluation of the anti-inflammatory effect of tezepelumab across the continuum of T2 activation. Other exploratory analyses include assessments of the impact of tezepelumab on airway remodelling, including reticular basement membrane thickening and airway epithelial integrity. At the onset of the COVID-19 pandemic, the protocol was amended to address the possibility that site visits would be limited. The amendment allowed for: at-home dosing of study drug by a healthcare professional, extension of the treatment period by up to 6 months so patients are able to attend an onsite visit to undergo the end-of-treatment bronchoscopy, and replacement of final follow-up visits with a virtual or telephone visit. Discussion: CASCADE aims to determine the mechanisms by which tezepelumab improves clinical asthma outcomes by evaluating the effect of tezepelumab on airway inflammatory cells and remodelling in patients with moderate-to-severe, uncontrolled asthma. An important aspect of this study is the evaluation of the anti-inflammatory effect of tezepelumab across patients with differing levels of eosinophilic and T2 inflammation. Trial registration: NCT03688074 (ClinicalTrials.gov). Registered 28 September 2018

    Sputum Streptococcus pneumoniae is reduced in COPD following treatment with benralizumab.

    Full text link
    We hypothesized whether the reduction in eosinophilic airway inflammation in patients with chronic obstructive pulmonary disease (COPD) following treatment with benralizumab, a humanized, afucosylated, monoclonal antibody that binds to interleukin-5 receptor α, increases the airway bacterial load. Analysis of sputum samples of COPD patients participating in a Phase II trial of benralizumab indicated that sputum 16S rDNA load and Streptococcus pneumoniae were reduced following treatment with benralizumab. However, in vitro, eosinophils did not affect the killing of the common airway pathogens S. pneumoniae or Haemophilus influenzae. Thus, benralizumab may have an indirect effect upon airway bacterial load

    Fevipiprant reduces airway smooth muscle mass in asthmatics via PGD2 receptor antagonism

    No full text
    Asthma is associated with increased airway smooth muscle (ASM) mass with increased disease severity and impaired lung function. The prostaglandin D2 (PGD2) receptor 2 (DP2) antagonist, fevipiprant, reduces airway eosinophilia and improves epithelial integrity, lung function, ACQ and AQLQ
    corecore