26 research outputs found

    Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    Get PDF
    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins

    Disruption of Yarrowia lipolytica TPS1 Gene Encoding Trehalose-6-P Synthase Does Not Affect Growth in Glucose but Impairs Growth at High Temperature

    Get PDF
    We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3′half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression

    Deep-sequencing reveals broad subtype-specific HCV resistance mutations associated with treatment failure

    Get PDF
    A percentage of hepatitis C virus (HCV)-infected patients fail direct acting antiviral (DAA)-based treatment regimens, often because of drug resistance-associated substitutions (RAS). The aim of this study was to characterize the resistance profile of a large cohort of patients failing DAA-based treatments, and investigate the relationship between HCV subtype and failure, as an aid to optimizing management of these patients. A new, standardized HCV-RAS testing protocol based on deep sequencing was designed and applied to 220 previously subtyped samples from patients failing DAA treatment, collected in 39 Spanish hospitals. The majority had received DAA-based interferon (IFN) a-free regimens; 79% had failed sofosbuvir-containing therapy. Genomic regions encoding the nonstructural protein (NS) 3, NS5A, and NS5B (DAA target regions) were analyzed using subtype-specific primers. Viral subtype distribution was as follows: genotype (G) 1, 62.7%; G3a, 21.4%; G4d, 12.3%; G2, 1.8%; and mixed infections 1.8%. Overall, 88.6% of patients carried at least 1 RAS, and 19% carried RAS at frequencies below 20% in the mutant spectrum. There were no differences in RAS selection between treatments with and without ribavirin. Regardless of the treatment received, each HCV subtype showed specific types of RAS. Of note, no RAS were detected in the target proteins of 18.6% of patients failing treatment, and 30.4% of patients had RAS in proteins that were not targets of the inhibitors they received. HCV patients failing DAA therapy showed a high diversity of RAS. Ribavirin use did not influence the type or number of RAS at failure. The subtype-specific pattern of RAS emergence underscores the importance of accurate HCV subtyping. The frequency of “extra-target” RAS suggests the need for RAS screening in all three DAA target regions

    DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage

    Get PDF
    Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature ageing. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with ageing. Here we show that the FOXO transcription factor DAF-16 is activated in response to DNA damage during development, whereas the DNA damage responsiveness of DAF-16 declines with ageing. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA-damage-induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16-mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists

    Hedonic Quality, Social Norms, and Environmental Campaigns

    Full text link

    Germline biallelic Mcm8 variants are associated with early-onset Lynch-like syndrome

    No full text
    Lynch syndrome is the most common cause of hereditary colorectal cancer (CRC), and it is characterized by DNA mismatch repair (MMR) deficiency. The term Lynch-like syndrome (LLS) is used for patients with MMR-deficient tumors and neither germline mutation in MLH1, MSH2, MSH6, PMS2, or EPCAM nor MLH1 somatic methylation. Biallelic somatic inactivation or cryptic germline MMR variants undetected during genetic testing have been proposed to be involved. Sixteen patients with early-onset LLS CRC were selected for germline and tumor whole-exome sequencing. Two potentially pathogenic germline MCM8 variants were detected in a male patient with LLS with fertility problems. A knockout cellular model for MCM8 was generated by CRISPR/Cas9 and detected genetic variants were produced by mutagenesis. DNA damage, microsatellite instability, and mutational signatures were monitored. DNA damage was evident for MCM8KO cells and the analyzed genetic variants. Microsatellite instability and mutational signatures in MCM8KO cells were compatible with the involvement of MCM8 in MMR. Replication in an independent familial cancer cohort detected additional carriers. Unexplained MMR-deficient CRC cases, even showing somatic biallelic MMR inactivation, may be caused by underlying germline defects in genes different than MMR genes. We suggest MCM8 as a gene involved in CRC germline predisposition with a recessive pattern of inheritance

    Germline biallelic Mcm8 variants are associated with early-onset Lynch-like syndrome

    No full text
    Lynch syndrome is the most common cause of hereditary colorectal cancer (CRC), and it is characterized by DNA mismatch repair (MMR) deficiency. The term Lynch-like syndrome (LLS) is used for patients with MMR-deficient tumors and neither germline mutation in MLH1, MSH2, MSH6, PMS2, or EPCAM nor MLH1 somatic methylation. Biallelic somatic inactivation or cryptic germline MMR variants undetected during genetic testing have been proposed to be involved. Sixteen patients with early-onset LLS CRC were selected for germline and tumor whole-exome sequencing. Two potentially pathogenic germline MCM8 variants were detected in a male patient with LLS with fertility problems. A knockout cellular model for MCM8 was generated by CRISPR/Cas9 and detected genetic variants were produced by mutagenesis. DNA damage, microsatellite instability, and mutational signatures were monitored. DNA damage was evident for MCM8KO cells and the analyzed genetic variants. Microsatellite instability and mutational signatures in MCM8KO cells were compatible with the involvement of MCM8 in MMR. Replication in an independent familial cancer cohort detected additional carriers. Unexplained MMR-deficient CRC cases, even showing somatic biallelic MMR inactivation, may be caused by underlying germline defects in genes different than MMR genes. We suggest MCM8 as a gene involved in CRC germline predisposition with a recessive pattern of inheritance.Hereditary cancer genetic
    corecore