752 research outputs found

    Blow-up dynamics of self-attracting diffusive particles driven by competing convexities

    Full text link
    In this paper, we analyze the dynamics of an NN particles system evolving according the gradient flow of an energy functional. The particle system is a consistent approximation of the Lagrangian formulation of a one parameter family of non-local drift-diffusion equations in one spatial dimension. We shall prove the global in time existence of the trajectories of the particles (under a sufficient condition on the initial distribution) and give two blow-up criteria. All these results are consequences of the competition between the discrete entropy and the discrete interaction energy. They are also consistent with the continuous setting, that in turn is a one dimension reformulation of the parabolic-elliptic Keller-Segel in high dimensions

    Investigation of phase-separated electronic states in 1.5”m GaInNAs/GaAs heterostructures by optical spectroscopy

    Get PDF
    We report on the comparative electronic state characteristics of particular GaInNAs/GaAs quantum well structures that emit near 1.3 and 1.5 ”m wavelength at room temperature. While the electronic structure of the 1.3 ”m sample is consistent with a standard quantum well, the 1.5 ”m sample demonstrate quite different characteristics. By using photoluminescence sPLd excitation spectroscopy at various detection wavelengths, we demonstrate that the macroscopic electronic states in the 1.5 ”m structures originate from phase-separated quantum dots instead of quantum wells. PL measurements with spectrally selective excitation provide further evidence for the existence of composition-separated phases. The evidence is consistent with phase segregation during the growth leading to two phases, one with high In and N content which accounts for the efficient low energy 1.5 ”m emission, and the other one having lower In and N content which contributes metastable states and only emits under excitation in a particular wavelength range

    Stably non-synchronizable maps of the plane

    Full text link
    Pecora and Carroll presented a notion of synchronization where an (n-1)-dimensional nonautonomous system is constructed from a given nn-dimensional dynamical system by imposing the evolution of one coordinate. They noticed that the resulting dynamics may be contracting even if the original dynamics are not. It is easy to construct flows or maps such that no coordinate has synchronizing properties, but this cannot be done in an open set of linear maps or flows in Rn\R^n, n≄2n\geq 2. In this paper we give examples of real analytic homeomorphisms of R2\R^2 such that the non-synchronizability is stable in the sense that in a full C0C^0 neighborhood of the given map, no homeomorphism is synchronizable

    Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up

    Get PDF
    We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact

    Structural investigation of crystallized Ge-Ga-Se chalcogenide glasses

    Get PDF
    H. Klym thanks to the Ministry of Education and Science of Ukraine for support and Dr. P. Demchenko for the assistance in XRD experiments.Crystallization transformation in the 80GeSe2-20Ga2Se3 chalcogenide glasses caused by annealing at 380 °C during different duration (25, 50, 80 and 100 hours) are studied using X-ray diffraction and atomic force microscopy methods. It is established that GeGa4Se phase of low- and high-temperature modification, Ga2Se3 phase (α- and Îł-modification) and GeSe2 phases are crystallized during this process. It is shown that annealing duration over 50 h does not lead to further internal structural crystallization, while annealing for 80 h result in processes of surface crystallization.Ministry of Education and Science of Ukraine; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    GaN directional couplers for integrated quantum photonics

    Full text link
    Large cross-section GaN waveguides are proposed as a suitable architecture to achieve integrated quantum photonic circuits. Directional couplers with this geometry have been designed with aid of the beam propagation method and fabricated using inductively coupled plasma etching. Scanning electron microscopy inspection shows high quality facets for end coupling and a well defined gap between rib pairs in the coupling region. Optical characterization at 800 nm shows single-mode operation and coupling-length-dependent splitting ratios. Two photon interference of degenerate photon pairs has been observed in the directional coupler by measurement of the Hong-Ou-Mandel dip with 96% visibility.Comment: 4 pages, 5 figure

    The one-dimensional Keller-Segel model with fractional diffusion of cells

    Get PDF
    We investigate the one-dimensional Keller-Segel model where the diffusion is replaced by a non-local operator, namely the fractional diffusion with exponent 0<α≀20<\alpha\leq 2. We prove some features related to the classical two-dimensional Keller-Segel system: blow-up may or may not occur depending on the initial data. More precisely a singularity appears in finite time when α<1\alpha<1 and the initial configuration of cells is sufficiently concentrated. On the opposite, global existence holds true for α≀1\alpha\leq1 if the initial density is small enough in the sense of the L1/αL^{1/\alpha} norm.Comment: 12 page

    Joule overheating poisons the fractional ac Josephson effect in topological Josephson junctions

    Full text link
    Topological Josephson junctions designed on the surface of a 3D-topological insulator (TI) harbor Majorana bound states (MBS's) among a continuum of conventional Andreev bound states. The distinct feature of these MBS's lies in the 4π4\pi-periodicity of their energy-phase relation that yields a fractional ac Josephson effect and a suppression of odd Shapiro steps under r ⁣fr\!f irradiation. Yet, recent experiments showed that a few, or only the first, odd Shapiro steps are missing, casting doubts on the interpretation. Here, we show that Josephson junctions tailored on the large bandgap 3D TI Bi2_2Se3_3 exhibit a fractional ac Josephson effect acting on the first Shapiro step only. With a modified resistively shunted junction model, we demonstrate that the resilience of higher order odd Shapiro steps can be accounted for by thermal poisoning driven by Joule overheating. Furthermore, we uncover a residual supercurrent at the nodes between Shapiro lobes, which provides a direct and novel signature of the current carried by the MBS. Our findings showcase the crucial role of thermal effects in topological Josephson junctions and lend support to the Majorana origin of the partial suppression of odd Shapiro steps.Comment: Revised article and Supplemental materia
    • 

    corecore